Skip to main content
Log in

Perfluorodecanoic acid and lipid metabolism in the rat

  • Published:
Lipids

Abstract

Alterations in lipid metabolism were axamined in adult male Sprague-Dawley rats seven days after a single intraperitoneal injection of perfluorodecanoic acid (PFDA; 20, 40 or 80 mg/kg). Because PFDA treatment caused a dose-related reduction in feed intake, the response of vehicle-treated rats pair-fed to those receiving PFDA was monitored to distinguish direct effects of the perfluorinated fatty acid from those secondary to hypophagia. Carcass content of lipid phosphorus and free cholesterol decreased in dose-dependent fashion in both PFDA-treated and pair-fed rats. Carcass triacylglycerols diminished in a similar manner, yet PFDA-treated rats at each dose had a higher concentration of neutral acylglycerols than their vehicle-treated, pair-fed counterparts. In vehicle-treated, pair-fed rats at the 80 mg/kg dose level, lipid phosphorus and free cholesterol as a proportion of carcass fat increased, whereas the share of the triacyl-glycerols declined. Because of the higher concentration of triacylglycerols in the carcass of rats treated with 80 mg/kg PFDA, enrichment of lipid phosphorus and free cholesterol in carcass fat was less than in their pair-fed partners. The amount of lipid phosphorus and free cholesterol per hepatocyte was similar in both PFDA-treated rats and their pair-fed partners. Liver triacyl-glycerols were markedly increased in PFDA-treated rats. A similar but less extensive augmentary effect of PFDA on hepatic esterified cholesterol was found. Concentration of triacylglycerols in plasma was not elevated in PFDA-treated rats, in spite of hepatic accumulation of esterified compounds. Also, the plasma level of free fatty acids and 3-hydroxybutyrate was similar in all treatment groups, including those receiving PFDA. Thus, the administration of PFDA appears to divert fatty acids from oxidation toward esterification in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PFDA:

perfluorodecanoic acid

ANOVA:

analysis of variance

SAS:

statistical analysis system

References

  1. Guenthner, R.A., and Vietor, L.M. (1962)Ind. Eng. Chem. Prod Res. Dev. 1, 165–169.

    Article  CAS  Google Scholar 

  2. Shinoda, K., and Nomura, T. (1980)J. Phys. Chem. 84, 365–369.

    Article  CAS  Google Scholar 

  3. Olson, C.T., and Andersen, M.E. (1983)Toxicol. Appl. Pharmacol. 70, 362–372.

    Article  PubMed  CAS  Google Scholar 

  4. George, M.E., and Andersen, M.E. (1986)Toxicol. Appl. Pharmacol. 85, 169–180.

    Article  PubMed  CAS  Google Scholar 

  5. Van Rafelghem, M.J., Noren, C.W., Menahan, L.A, and Peterson, R.E.,Toxicol. Lett. 40, 57–69.

  6. Kelling, C.K., Van Rafelghem, M.J., Drake, R.L., Menahan, L.A., and Peterson, R.E. (1986)J. Biochem. Toxicol. 1(3), 23–37.

    Article  PubMed  CAS  Google Scholar 

  7. Wollenberger, A., Ristau, O., and Schoffa, G. (1960)Pflügers Arch., 270, 399–412.

    Article  CAS  Google Scholar 

  8. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  9. Laurell, S. (1966)Scand. J. Clin. Lab. Invest. 18, 668–672.

    PubMed  CAS  Google Scholar 

  10. Christie, W.W. (1973) inLipid Analysis, pp. 222–223 Pergamon Press, New York.

    Google Scholar 

  11. Zilversmit, D.B., and Davis, A.K. (1950)J. Lab. Clin. Med. 35, 155–160.

    PubMed  CAS  Google Scholar 

  12. Deacon, A.C., and Dawson, P.J.G. (1979) J. Clin. Chem.25, 976–984.

    CAS  Google Scholar 

  13. Salè, F.O., Marchesini, S., Fishman, P.H., and Berra, B. (1984)Anal. Biochem. 142, 347–350.

    Article  Google Scholar 

  14. Mellanby, J., and Williamson, D.H. (1974) inMethods of Enzymatic Analysis (H.U. Bergmeyer, ed.), pp. 1840–1843, Academic Press, New York.

    Google Scholar 

  15. Williamson, D.H., and Mellanby, J. (1974) inMethods of Enzymatic Analysis (H.U. Bergmeyer, ed.) pp. 1836–1839, Academic Press, New York.

    Google Scholar 

  16. Hron, T.W., and Menahan, L.A. (1981)J. Lipid Res. 22, 377–381.

    PubMed  CAS  Google Scholar 

  17. Livingston, J.N., Cuatrecasas, P., and Lockwood, D.H. (1974)J. Lipid Res. 15, 26–32.

    PubMed  CAS  Google Scholar 

  18. Richards, G.M. (1974)Anal. Biochem. 57, 369–376.

    Article  PubMed  CAS  Google Scholar 

  19. Bradford, M.M. (1976)Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  20. Milliken, G.A., and Johnson, D.E. (1984) inAnalysis of Messy Data Volume I: Designed Experiments, pp. 35–36, 146–155, Van Nostrand Reinhold Co., New York.

    Google Scholar 

  21. Neter, J., and Wasserman, W. (1974)Applied Linear Statistical Methods, Richard D. Irwin, Homewood, IL.

    Google Scholar 

  22. SAS User's Guide: Statistics (1985) SAS Institute Inc., Cary, NC.

  23. Owen, J.S., and McIntyre, N. (1982)Trends Biochem. Sci. 7, 95–98.

    Article  CAS  Google Scholar 

  24. Hollanders, B., Mougin, A., N'Diaye, F., Hentz, E., Aude, X., and Girard, A. (1986)Comp. Biochem. Physiol. 84B, 83–98.

    CAS  Google Scholar 

  25. Van Rafelghem, M.J., Andersen, M.E., Lane, S., Luking, S., and Harrison, E.H. (1984)Toxicologist 4, 174.

    Google Scholar 

  26. Harrison, E.H., Lane, J.S., Luking, S., Van Rafelghem, M.J., and Andersen, M.E. (1988)Lipids 23, 115–119.

    PubMed  CAS  Google Scholar 

  27. Freedland, R.A. (1967)J. Nutr. 91, 489–495.

    PubMed  CAS  Google Scholar 

  28. Herrera, E., and Freinkel, E. (1968)Biochim. Biophys. Acta 170, 244–253.

    PubMed  CAS  Google Scholar 

  29. Weigand, W., Hannappel, E., and Brand, K. (1980)J. Nutr. 110, 669–674.

    PubMed  CAS  Google Scholar 

  30. Dianzani, M.U. (1979) inToxic Injury of the Liver. Part A (Farber, E., and Fisher, M.M., eds.), pp. 281–331, Marcel Dekker, Inc., New York.

    Google Scholar 

  31. Zammit, V.A. (1984)Prog. Lipid Res. 23, 39–67.

    Article  PubMed  CAS  Google Scholar 

  32. Van Harken, D.R., Dixon, C.W., and Heimberg, M. (1969)J. Biol. Chem. 224, 2278–2285.

    Google Scholar 

  33. Goreski, C.A., Daly, D.S., Mishkin, S., and Arias, I.M. (1978)Am. J. Physiol. 234(6), E542-E553.

    Google Scholar 

  34. Kohout, M., Braun, T., and Mihalec, C. (1965)Physiol. Bohemoslov. 14, 460–465.

    PubMed  CAS  Google Scholar 

  35. Raaka, B.M., and Lowenstein, J.M. (1979)J. Biol. Chem. 254, 3303–3310.

    PubMed  CAS  Google Scholar 

  36. Raaka, B.M., and Lowenstein, J.M. (1979)J. Biol. Chem. 254, 6755–6762.

    PubMed  CAS  Google Scholar 

  37. Osmundsen, H., and Sherratt, H.S.A. (1978)Biochem. Soc. Trans. 6, 84–88.

    PubMed  CAS  Google Scholar 

  38. Schulz, H. (1987)Life Sci. 40, 1443–1449.

    Article  PubMed  CAS  Google Scholar 

  39. Spector, A.A., Mathur, S.N., and Kaduce, T.L. (1979)Prog. Lipid Res. 18, 31–53.

    Article  PubMed  CAS  Google Scholar 

  40. George, M.E., and Andersen, M.E. (1986)Toxicologists 6, 315.

    Google Scholar 

  41. Danis, M., Kauffman, F.C., Evans, R.K., and Thurman, R.G. (1981)J. Pharmacol. Exp. Ther. 219, 383–388.

    PubMed  CAS  Google Scholar 

  42. Lombardi, B. (1965)Fed. Proc. 24, 1200–1205.

    PubMed  CAS  Google Scholar 

  43. Kelling, C.K., Van Rafelghem, M.J., Menahan, L.A., and Peterson, R.E. (1987)Biochem. Pharmacol. 36, 1337–1344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Van Rafelghem, M.J., Vanden Heuvel, J.P., Menahan, L.A. et al. Perfluorodecanoic acid and lipid metabolism in the rat. Lipids 23, 671–678 (1988). https://doi.org/10.1007/BF02535666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535666

Keywords

Navigation