Skip to main content
Log in

Predicting coordinated lipid biosynthesis: Application to the surfactant-accommodated epidermis

  • Articles
  • Published:
Lipids

Abstract

Factorialized correlation analysis is proposed as a method for predicting the coordination of multiple enzyme pathways. The approach can be used potentially to find new relationships and to predict relationships that have been established in other tissues. However, careful tracer studies are needed to verify the cause-and-effect relationships between precursor and products. In this study, guinea pigs that were chronically treated with an anionic, a nonionic and a cationic surfactant passed through an irritation stage to a clinical state that appeared normal. The method was used to examine binary coordination of lipid biosynthesis in the epidermis by using a factorialized table of regression coefficients. Coordinated lipid relationships that have been reported in other tissues were predicted between sphingomyelin and cholesterol, as well as between phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine. A new inverse relationship was found between triglycerides and both sphingomyelin and cholesterol, using this method. These data are discussed with respect to a membrane fluidization model for the accommodated state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L-1:

laureth-1

LTC:

laurtrimonium chloride

SLS:

sodium lauryl sulfate

AEC:

automatic external standard channels ratio

TLC:

thin layer chromatograph(ic,y)

References

  1. Adams, R.M. (1969) inOccupational Contact Dermatitis, p. 6, Lippencott Publishers, New York, NY.

    Google Scholar 

  2. Mathias, C.G.T., and Maibach, H.I. (1978)Clin. Toxicol. 13, 333–346.

    Article  PubMed  CAS  Google Scholar 

  3. Opdyke, D.L., and Burnett, C.M. (1965)Toilet Goods Assoc. 44, 3–4.

    Google Scholar 

  4. Stanley, J., Foidart, J., Murray, J., Martin, G., and Katz, S. (1980)J. Invest. Dermatol. 74, 54–58.

    Article  PubMed  CAS  Google Scholar 

  5. Bligh, E., and Dyer, W. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  6. Shand, J.H., and Noble, R.C. (1980)Anal. Biochem. 101, 427–434.

    Article  PubMed  CAS  Google Scholar 

  7. Snyder, F., and Moehl, A. (1969)Anal. Biochem. 28, 503–509.

    Article  PubMed  CAS  Google Scholar 

  8. Radin, N.S., Deshmukh, G.D., Selvam, R., and Hospattankar, A.V. (1982)Biochim. Biophys. Acta 713, 474–478.

    PubMed  CAS  Google Scholar 

  9. Nobel, R.C., Shand, J.H., and Wagstaff, H.F. (1982)Anal. Biochem. 122, 47–51.

    Article  Google Scholar 

  10. Nobel, R.C., Shand, J.H., and West, I.G. (1982)LKB Instr. J. 29, 1–7.

    Google Scholar 

  11. Selvam, R., and Radin, N.S. (1981)Anal. Biochem. 112, 338–345.

    Article  PubMed  CAS  Google Scholar 

  12. McOsker, D.E., and Beck, L.W. (1967)J. Invest. Dermatol. 48, 372–383.

    PubMed  CAS  Google Scholar 

  13. Patton, S. (1970)J. Theor. Biol. 29, 489–491.

    Article  PubMed  CAS  Google Scholar 

  14. Rouser, G., Kritchevsky, G., and Yamamoto, A. (1972)Adv. Lipid Res. 10, 261–360.

    CAS  Google Scholar 

  15. Barenholz, Y. (1984) inPhysiology of Membrane Fluidity (Shinitzky, M., ed.) Vol. I, pp. 131–173, CRC Press, Boca Raton, FL.

    Google Scholar 

  16. Frederickson, D.S., and Sloan, H.R. (1972) inThe Metabolic Basis of Inherited Disease (Frederickson, D.S., ed.) 3rd ed., pp. 7813–807, McGraw-Hill, New York, NY.

    Google Scholar 

  17. Sakuragawa, N., Sakuragawa, M., Kuwabara, T., Pentchev, P.G., Barranger, J.A., and Brady, R.O. (1977)Science 196, 317–319.

    Article  PubMed  CAS  Google Scholar 

  18. Elias, P.M., Lampe, M.A., Chung, J., and Williams, M.L. (1963)Lab. Invest. 48, 565–577.

    Google Scholar 

  19. Hirata, F., and Axelrod, J. (1978)Nature 275, 219–220.

    Article  PubMed  CAS  Google Scholar 

  20. Hirata, F., and Axelrod, J. (1978)Proc. Natl. Acad. Sci. USA 75, 2348–2352.

    Article  PubMed  CAS  Google Scholar 

  21. Borkenhagen, L.F., Kennedy, E.P., and Fielding, L. (1961)J. Biol. Chem. 236, PC28-PC30.

    Google Scholar 

  22. Hubscher, G. (1961)Biochim. Biophys. Acta 57, 555–561.

    Article  Google Scholar 

  23. Dennis, E.A., and Kennedy, E.P. (1972)J. Lipid Res. 13, 263–267.

    PubMed  CAS  Google Scholar 

  24. Bjerve, K.S. (1973)Biochim. Biophys. Acta 296, 549–562.

    PubMed  CAS  Google Scholar 

  25. Suskind, R.R. (1977)Environ. Health Perspec. 20, 27–37.

    CAS  Google Scholar 

  26. Hill, M.W., and Bangham, A.D. (1975)Adv. Exp. Med. Biol. 59, 1–9.

    PubMed  CAS  Google Scholar 

  27. Chin, J.H., Parsons, L.M., and Goldstein, D.B. (1978)Biochim. Biophys. Acta 513, 358–363.

    Article  PubMed  CAS  Google Scholar 

  28. Chin, J.H., and Goldstein, D.B. (1984)Lipids 19, 929–935.

    Article  PubMed  CAS  Google Scholar 

  29. Shinitzky, M., and Inbar, M. (1974)J. Mol. Biol 85, 603–615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ando, H.Y., Gazdick, G.G.G., Sugita, E.T. et al. Predicting coordinated lipid biosynthesis: Application to the surfactant-accommodated epidermis. Lipids 23, 1073–1078 (1988). https://doi.org/10.1007/BF02535655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535655

Keywords

Navigation