Skip to main content
Log in

Substrate specificity of lysosomal cholesteryl ester hydrolase isolated from rat liver

  • Published:
Lipids

Abstract

The effect of various physicochemical forms of substrate on the activity of acid cholesteryl ester hydrolase isolated from rat liver lysosomes was studied. The amount of sodium taurocholate was varied in the substrate mixture which contained constant amounts of egg phosphatidylcholine (PC) and cholesteryl oleate. The resulting substrate forms produced were PC vesicles, PC vesicles with incorporated sodium taurocholate, mixed micelles, and mixed micelles together with free bile salt micelles. Gradually increasing amounts of sodium taurocholate activated cholesteryl oleate hydrolysis until the molar sodium taurocholate/PC ratio of ca. 0.6; thereafter hydrolytic activity decreased rapidly. The presence of sodium taurocholate micelles clearly inhibits cholesteryl oleate hydrolysis. We therefore propose that the activation observed at low bile salt concentrations depends on bile salt interaction with the substrate vehicle, whereas the inhibition observed at high bile salt concentrations depends on sodium taurocholate interacting with the enzyme. When comparing different phospholipid components in the supersubstrate, the enzyme activity was highest in the presence of dioleyl PC and decreased when present with dipalmitoyl PC and egg PC. Egg lysoPC completely inhibited the enzyme activity. A net negative charge on the surface of the vesicle substrate increased cholesteryl ester hydrolase activity while a net positive charge on the surface inhibited the enzyme activity. Only part of the product inhibition of cholesteryl oleate hydrolase caused by Na-oleate was reversible when tested with bovine serum albumin present in the incubation mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Momsen, W.E., and Brockman, H.L. (1977)Biochim. Biophys. Acta 486, 103–113.

    CAS  Google Scholar 

  2. Hyun, J., Kothari, H., Herm, E., Mortenson, J., Treadwell, C.R., and Vahouny, G.V. (1969)J. Biol. Chem. 244, 1937–1945.

    PubMed  CAS  Google Scholar 

  3. Takatori, T., Phillips, F., and Privett, D.S. (1976)Lipids 11, 357–363.

    PubMed  CAS  Google Scholar 

  4. Pittman, R.C., and Steinberg, D. (1977)Biochim. Biophys. Acta 487, 431–444.

    PubMed  CAS  Google Scholar 

  5. Kothari, H.V., Miller, B.F., and Kritchevsky, D. (1973)Biochim. Biophys. Acta 296, 446–454.

    PubMed  CAS  Google Scholar 

  6. Takano, T., Black, W.J., Peters, T.J., and De Duve, C. (1974)J. Biol. Chem. 249, 6732–6737.

    PubMed  CAS  Google Scholar 

  7. Nilsson, Å., Norden, H., and Wilhelmsson, L. (1973)Biochim. Biophys. Acta 296, 593–603.

    PubMed  CAS  Google Scholar 

  8. Stokke, K.T. (1972)Biochim. Biophys. Acta 270, 156–166.

    PubMed  CAS  Google Scholar 

  9. Stokke, K.T. (1972)Biochim. Biophys. Acta 280, 329–335.

    PubMed  CAS  Google Scholar 

  10. Deykin, D., and Goodman, D.S. (1962)J. Biol. Chem. 237, 3649–3656.

    PubMed  CAS  Google Scholar 

  11. Brecher, P., Chobanian, J., Small, D.M., and Chobanian, A.V. (1976)J. Lipid Res. 17, 239–247.

    PubMed  CAS  Google Scholar 

  12. Small, D.M. (1977)N. Engl. J. Med. 297, 873–877.

    Article  PubMed  CAS  Google Scholar 

  13. Ho, Y.K., Brown, M.S., and Goldstein, J.L. (1980)J. Lipid Res. 21, 391–398.

    PubMed  CAS  Google Scholar 

  14. Sloan, H.R. and Fredrickson, D.S. (1972) inMetabolic Basis of Inherited Disease (Stanbury, J.B., Wyngaarden, J.B., and Fredrickson, D.S., eds.), 3rd edn., pp. 808–832, McGraw-Hill, New York.

    Google Scholar 

  15. Subbiah, R., and Dicke, B. (1976)Atherosclerosis 24, 575–580.

    Article  PubMed  CAS  Google Scholar 

  16. Kritchevsky, D., and Kothari, H.V. (1973)Biochim. Biophys. Acta 326, 489–491.

    PubMed  CAS  Google Scholar 

  17. Brecher, P., Pyun, H.Y., and Chobanian, A.V. (1977)J. Lipid Res. 18, 154–163.

    PubMed  CAS  Google Scholar 

  18. Takano, T., and Imanaka, T. (1978)Acta Histochem. Cytochem. 11, 323–336.

    CAS  Google Scholar 

  19. Haley, N.J., Fowler, S., and De Duve, C. (1980)J. Lipid Res. 21, 961–969.

    PubMed  CAS  Google Scholar 

  20. Brown, W.J., and Sgoutas, D.S. (1980)Biochim. Biophys. Acta 617, 305–317.

    PubMed  CAS  Google Scholar 

  21. Lundberg, B., Klemets, R., and Lövgren, T. (1979)Biochim. Biophys. Acta 572, 492–501.

    PubMed  CAS  Google Scholar 

  22. Brockerhoff, H., and Jensen, R.G. (1974) inLipolytic Enzymes, pp. 176–193, Academic Press, New York.

    Google Scholar 

  23. Hyun, J., Steinberg, M., Treadwell, C.R., and Vahouny, G.V. (1971)Biochem. Biophys. Res. Commun. 44, 819–825.

    Article  PubMed  CAS  Google Scholar 

  24. Hyun, J., Treadwell, C.R., and Vahouny, G.V. (1972)Arch. Biochem. Biophys. 152, 233–242.

    Article  PubMed  CAS  Google Scholar 

  25. Lundberg, B. (1973)Acta Chem. Scand. Ser. B 27, 3545–3549.

    CAS  Google Scholar 

  26. Pope, J.L. (1967)J. Lipid Res. 8, 146–147.

    PubMed  CAS  Google Scholar 

  27. Klemets, R., and Lundberg, B. (1984)Lipids 19, 692–698.

    Article  PubMed  CAS  Google Scholar 

  28. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  29. Mazer, N.A., Benedek, G.B., and Carey, M.C. (1980)Biochemistry 19, 601–615.

    Article  PubMed  CAS  Google Scholar 

  30. Teng, M-H., and Kaplan, A. (1974)J. Biol. Chem. 249 1064–1070.

    PubMed  CAS  Google Scholar 

  31. Warner, T.G., Dambach, L.M., Shin, J.H., and O'Brien, J.S. (1981)J. Biol. Chem. 256, 2952–2957.

    PubMed  CAS  Google Scholar 

  32. Verger, R., and de Haas, G.H. (1976)Annu. Rev. Biophys. Bioeng. 5, 77–117.

    Article  PubMed  CAS  Google Scholar 

  33. Burks, C. (1983) Structural and Enzymological Studies on Cholesteryl Ester Phases: Implications for Atherosclerosis, Ph.D. Dissertation, Yale University, New Haven, Connecticut, pp. 149–152.

    Google Scholar 

  34. Bath, S.G., and Brockman, H.L. (1981)J. Biol. Chem. 256, 3017–3023.

    Google Scholar 

  35. Khoo, J.C., Drevon, C.A., and Steinberg, D. (1979)J. Biol. Chem. 254, 1785–1787.

    PubMed  CAS  Google Scholar 

  36. Treleaven, W.D., Wassall, S.R., and Cushley, R.J. (1983)Chem. Phys. Lipids 33, 223–231.

    Article  PubMed  CAS  Google Scholar 

  37. Bath, S.G., and Brockman, H.L. (1982)Biochemistry 21, 1547–1552.

    Article  Google Scholar 

  38. Small, D.M., Penkett, S.A., and Chapman, D. (1969)Biochim. Biophys. Acta 176, 178–189.

    PubMed  CAS  Google Scholar 

  39. Borgström, B. (1964)J. Lipid Res. 5, 522–531.

    Google Scholar 

  40. Müller, K. (1981)Biochemistry 20, 404–414.

    Article  PubMed  Google Scholar 

  41. Duane, W.C. (1977)Biochem. Biophys. Res. Commun. 74, 223–229.

    Article  PubMed  CAS  Google Scholar 

  42. Momsen, W.E., and Brockman, H.L. (1976)J. Biol. Chem. 251, 378–383.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Klemets, R., Lundberg, B. Substrate specificity of lysosomal cholesteryl ester hydrolase isolated from rat liver. Lipids 21, 481–485 (1986). https://doi.org/10.1007/BF02535632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535632

Keywords

Navigation