Skip to main content
Log in

Ascorbate-enhanced lipid peroxidation in photooxidized cell membranes: Cholesterol product analysis as a probe of reaction mechanism

  • Free Radicals, Antioxidants, Skin Cancer and Related Diseases Symposium Held at the 78th AOCS Annual Meeting in New Orieans, Louisiana, May 1987
  • Published:
Lipids

Abstract

Cholesterol was used as an in situ probe for studying mechanisms of lipid peroxidation in isolated erythrocyte membranes subjected to different prooxidant conditions. The membranes were labeled with [14C]cholesterol by exchange with prelabeled unilamellar liposomes and photosensitized with hematoporphyrin derivative. Irradiation with a dose of blue light resulted in thiobarbituric acid-detectable lipid peroxidation that was increased markedly by subsequent dark incubation with 0.5–1.0 mM ascorbate (AH). Ascorbate-stimulated lipid peroxidation was inhibited by EDTA, desferrioxamine (DOX) and butylated hydroxytoluene (BHT), suggesting that the process is free radical in nature and catalyzed by membrane-bound iron. Thin layer chromatography and radiometric scanning of extracted lipids from photooxidized membranes revealed that the major oxidation product of cholesterol was the 5α-hydroperoxide (5α-OOH), a singlet oxygen adduct. Post-irradiation treatment with AH/Fe(III) resulted in an almost-total disappearance of 5α-OOH and the preponderance of free radical oxidation products, e.g. 7-ketocholesterol, the epimeric 7α-/7β-hydroperoxides (7α-/7β-OOH) and their respective alcohols (7α-/7β-OH). EDTA, DOX and BHT inhibited the formation of these products, while catalase and superoxide dismutase had no effect. These results are consistent with a mechanism involving 1-electron reduction of photogenerated hydroperoxides to oxyl radical, which trigger bursts of free radical lipid peroxidation. Though generated in this system, partially reduced oxygen species, viz. superoxide, hydrogen peroxide and hydroxyl radical, appear to be relatively unimportant in the autoxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AH :

ascorbate

BHT:

butylated hydroxytoluene

DOX:

desferrioxamine

HPD:

hematoporphyrin derivative

LOOH:

lipid hydroperoxide

PBS:

phosphate-buffered saline

TBA:

thiobarbituric acid

TBARS:

thiobarbituric acid reactive substance(s)

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

5α-OH:

5α-cholest-6-ene-3β,5-diol

5α-OOH:

3β-hydroxy-5α-cholest-6-ene-5-hydroperoxide

7α-OH:

cholest-5-en-3β,7α-diol

7α-OOH:

3β-hydroxycholest-5-en-7α-hydroperoxide

7β-OOH:

3β-hydroxycholest-5-en-7β-hydroperoxide

7β-OH:

cholest-5-en-3β,7β-diol

7-one:

3β-hydroxycholest-5-en-7-one

References

  1. Schenck, G.O. (1957)Angew. Chem. 69, 579–599.

    CAS  Google Scholar 

  2. Suwa, K., Kimura, T., and Schaap, A.P. (1977)Biochem. Biophys. Res. Commun. 75, 785–792.

    Article  PubMed  CAS  Google Scholar 

  3. Nakano, M., Sugioka, K., Nakamura, T., and Oki, T. (1980)Biochim. Biophys. Acta 619, 274–286.

    PubMed  CAS  Google Scholar 

  4. Smith, L.L. (1981)Cholesterol Autoxidation, Plenum Press, New York.

    Google Scholar 

  5. Foote, C.S., Shook, F.C. and Abakerli, R.B. (1984)Methods Enzymol. 105, 36–47.

    Article  PubMed  CAS  Google Scholar 

  6. Sevanian, A., and McLeod, L.L. (1987)Lipids 22, 627–636.

    PubMed  CAS  Google Scholar 

  7. Lamola, A.A., Yamane, T., and Trozzolo, A.M. (1973)Science 179, 1131–1133.

    Article  PubMed  CAS  Google Scholar 

  8. Girotti, A.W., Bachowski, G.J., and Jordan, J.E. (1987)Lipids 22, 401–408.

    Article  PubMed  CAS  Google Scholar 

  9. Kalyanaraman, B., Feix, J.B., Sieber, F., Thomas, J.P., and Girotti, A.W. (1987)Proc. Natl. Acad. Sci. USA 84, 2999–3003.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas, J.P., Hall, R.D., and Girotti, A.W. (1987)Cancer Lett. 35, 295–302.

    Article  PubMed  CAS  Google Scholar 

  11. Fairbanks, G., Steck, T.L., and Wallach, D.F.H. (1971)Biochemistry 10, 2606–2617.

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Gomer, C.J., and Dougherty, T.J. (1979)Cancer Res. 39, 146–151.

    PubMed  CAS  Google Scholar 

  14. Kessel, D., and Chow, T. (1983)Cancer Res. 43, 1994–1999.

    PubMed  CAS  Google Scholar 

  15. Dougherty, T.J. (1987)Photochem. Photobiol. 45, 879–889.

    PubMed  CAS  Google Scholar 

  16. Lange, Y., Cutler, H.B., and Steck, T.L. (1980)J. Biol. Chem. 255, 9331–9337.

    PubMed  CAS  Google Scholar 

  17. Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1985)Photochem. Photobiol. 41, 267–276.

    PubMed  CAS  Google Scholar 

  18. Girotti, A.W., and Thomas, J.P. (1984)J. Biol. Chem. 259, 1744–1752.

    PubMed  CAS  Google Scholar 

  19. Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1986)Arch. Biochem. Biophys. 251, 639–653.

    Article  PubMed  CAS  Google Scholar 

  20. Foote, C.S. (1976) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. 2, pp. 85–134, Academic Press, New York.

    Google Scholar 

  21. Smith, L.L., Mathews, W.S., Price, J.C., Bachman, R.C., and Reynolds, B. (1967)J. Chromatogr. 27, 187–205.

    Article  CAS  Google Scholar 

  22. Shinar, E., Navok, T., and Chevion, M. (1983)J. Biol. Chem. 258, 14778–14783.

    PubMed  CAS  Google Scholar 

  23. Bachowski, G.J., and Girotti, A.W.,Free Rad. Biol. Med., in press.

  24. Pryor, W.A., Stanley, J.P., andBlair, E. (1986)Lipids 11, 370–379.

    Google Scholar 

  25. Halliwell, B., and Gutteridge, J.M.C. (1984)Methods Enzymol. 105, 49–56.

    Google Scholar 

  26. Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1985)Arch. Biochem. Biophys. 236, 238–251.

    Article  PubMed  CAS  Google Scholar 

  27. Aust, S.D., and Svingen, B.A. (1982) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. 5, pp. 1–28, Academic Press, New York.

    Google Scholar 

  28. Teng, J.I., Kulig, M.J., and Smith, L.L. (1973)J. Chromatogr. 75, 108–113.

    Article  PubMed  CAS  Google Scholar 

  29. Doleiden, F.H., Farenholtz, S.R., Lamola, A.A., and Trozzolo, A.M. (1974)Photochem. Photobiol. 20, 519–521.

    PubMed  CAS  Google Scholar 

  30. Made Gowda, N.M., and Smith, L.L. (1984)J. Steroid Biochem. 20, 917–922.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bachowski, G.J., Thomas, J.P. & Girotti, A.W. Ascorbate-enhanced lipid peroxidation in photooxidized cell membranes: Cholesterol product analysis as a probe of reaction mechanism. Lipids 23, 580–586 (1988). https://doi.org/10.1007/BF02535601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535601

Keywords

Navigation