Skip to main content
Log in

Effect of host sterols on the sterol composition and virulence of a nuclear polyhedrosis virus ofHeliothis zea

  • Articles
  • Published:
Lipids

Abstract

The type of sterol in the diet ofHeliothis zea affected not only the sterol composition of the insect larva but also the virulence and/or sterol composition of a single-nucleocapsid nuclear polyhedrosis virus (HzSNPV). This baculovirus, which was purified by differential and sucrose density gradient centrifugation, had a sterol content of 40 ng per 106 polyhedra. When the sterol composition of HzSNPV was characterized by gas liquid chromatography, reversed phase-high performance liquid chromatography, mass spectrometry, proton nuclear magnetic resonance spectrometry and/or ultraviolet spectroscopy, the sterols in the virus were similar to those of the host. The HzSNPV isolated from larvae fed Δ5_, Δ0_ or Δ5,7-sterols contained primarily cholesterol, cholestanol or 7-dehydrocholesterol, respectively. Changes in the sterol composition of HzSNPV affected its LD50, but not LT50, in larvae containing Δ5-sterols. The LD50 of virus isolated from larvae containing Δ0_, Δ5_ and Δ7-sterols decreased from 275,423 to 32,359 to 5,012 polyhedra/larva, respectively. The latter virus was also more virulent than the one that was isolated from larvae containing Δ5,7-sterol and had an LD50 of 58,884 polyhedra/larva. In contrast, the LD50 of an HzSNPV (Sandoz, Inc.) containing Δ5-sterol was not affected by the presence of Δ5_, Δ0_ or Δ5,7-sterols in the tissues of the host (1,413; 1,288 and 355 polyhedra/larva, respectively). The results of this study indicate that the sterol composition ofH. zea can affect the sterol composition of HzSNPV and therefore may affect the ability of this biological control agent to control its economically important insect host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

αc, k':

k for the test sterol/k′ for cholesterol

TMS:

Si(CH3)4

χ2 :

chi-square

df:

degrees of freedom

EM:

electron microscopy

GLC:

gas liquid chromatography

1H-NMR:

proton nuclear magnetic resonance spectrometry

HzSNPV:

single-nucleocapsid nuclear polyhedrosis virus ofH. zea

k′:

(Vt-V0)V0

LD50 :

median lethal dose

LT50 :

median lethal time

MS:

mass spectrometry

NPV:

nuclear polyhedrosis virus

RP-HPLC:

reversed phase-high performance liquid chromatography

RRT:

retention time relative to cholesterol

TLC:

thin layer chromatography

UV:

ultraviolet spectroscopy

V0 :

void volume

Vt :

retention volume of the sterol

cholestanol:

5α-cholestan-3β-ol

cholesterol:

cholest-5-en-3β-ol

7-dehydrocholesterol:

cholesta-5,7-dien-3β-ol

desmosterol:

cholesta-5,24-dien-3β-ol

22-dihydroergosterol:

24β-methylcholesta-5,7-dien-3β-ol

ergosterol:

24β-methylcholesta-5,7,22-trien-3β-ol

lathosterol:

cholest-7-en-3β-ol

24ξ-methylcholesterol:

24ξ-methylcholesta-5-en-3β-ol

sitosterol:

24α-ethylcholest-5-en-3β-ol

stigmasterol:

24α-ethylcholest-5,22-dien-3β-ol

References

  1. Lenard, J. (1978)Ann. Rev. Biophys. Bioeng. 7, 139–165.

    Article  CAS  Google Scholar 

  2. Jackson, A.O., Franki, R.I.B., Zuidema, D. (1987) inThe Rhabdoviruses (Wagner, R.R., ed.) pp. 427–508, Plenum Press, New York, NY.

    Google Scholar 

  3. Moore, N.F., Patzer, E.J., Shaw, J.M., Thompson, T.E., and Wagner, R.R. (1978)J. Virol. 27, 320–329.

    PubMed  CAS  Google Scholar 

  4. Pal, R., and Wagner, R.R. (1987) inThe Rhabdoviruses (Wagner, R.R., ed.) pp. 75–118, Plenum Press, New York, NY.

    Google Scholar 

  5. Blough, H.A., and Tiffany, J.M. (1973)Adv. Lipid Res. 11, 267–339.

    CAS  Google Scholar 

  6. Bates, S.R., and Rothblat, G.H. (1972)J. Virol. 9, 883–890.

    PubMed  CAS  Google Scholar 

  7. Kielian, M.C., and Helenius, A. (1984)J. Virol. 52, 281–283.

    PubMed  CAS  Google Scholar 

  8. Mooney, J.J., Dalrymple, J.M., Alving, C.R., and Russell, P.K. (1975)J. Virol. 15, 225–231.

    PubMed  CAS  Google Scholar 

  9. Kundrot, C.E., Spangler, E.A., Kendall, D.A., MacDonald, R.C., and MacDonald, R.I. (1983)Proc. Natl. Acad. Sci. USA 80, 1608–1612.

    Article  PubMed  CAS  Google Scholar 

  10. Nes, W.R., and McKean, M.L. (1977) inBiochemistry of Steroids and Other Isopentenoids, p. 149, University Park Press, Baltimore, MD.

    Google Scholar 

  11. Blough, H.A., and Tiffany, J.M. (1980) inCell Membranes and Viral Envelopes (Blough, H.A., and Tiffany, J.M., eds.) Vol. 2, pp. 459–493, Academic Press, New York, NY.

    Google Scholar 

  12. Svoboda, J.A., and Thompson, M.J. (1985) inComprehensive Insect Physiology Biochemistry and Pharmacology (Kerkut, G.A., and Gilbert, L.I., eds.) Vol. 10, pp. 137–175, Pergamon Press, New York, NY.

    Google Scholar 

  13. Ritter, K.S. (1984)Arch. Insect Biochem. Physiol. 1, 281–296.

    Article  CAS  Google Scholar 

  14. Ritter, K.S. (1986)Arch. Insect Biochem. Physiol. 3, 349–362.

    Article  CAS  Google Scholar 

  15. Balange-Orange, N., and Devauchelle, G. (1982)Arch. Virol. 73, 363–367.

    Article  PubMed  CAS  Google Scholar 

  16. Bergold, G.H., and Wellington, E.F. (1954)J. Bacteriol. 67 210–216.

    PubMed  CAS  Google Scholar 

  17. Wildy, P. (1971) inMonographs in Virology (Melnick, J.L., ed.) Vol. 5, p. 32, Karger, New York, NY.

    Google Scholar 

  18. Yamamoto, T., and Tamada, Y. (1977)J. Invertebr. Pathol. 30, 279–281.

    Article  CAS  Google Scholar 

  19. Ritter, K.S., and Nes, W.R. (1981)J. Insect. Physiol. 27, 175–182.

    Article  CAS  Google Scholar 

  20. Billheimer, J.T., Tavani, D.M., and Ritter, K.S. (1983)Comp. Biochem. Physiol. 76B, 127–132.

    CAS  Google Scholar 

  21. Ritter, K.S., and Nes, W.R. (1981)J. Insect Physiol. 27, 419–424.

    Article  CAS  Google Scholar 

  22. Ritter, K.S., and Tanada, Y. (1978)Entomophaga 23, 349–359.

    Article  Google Scholar 

  23. Ritter, K.S., Tanada, Y., Hess, R.T., and Omi, E.M. (1982)J. Invertebr. Pathol. 39, 203–209.

    Article  Google Scholar 

  24. Finney, D.J. (1971) inProbit Analysis, 3rd ed., pp. 63–80, Cambridge University Press, New York, NY.

    Google Scholar 

  25. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  26. Ritter, K.S., Weiss, B.A., Norrbom, A.L., and Nes, W.R. (1982)Comp. Biochem. Physiol. 71B, 345–349.

    CAS  Google Scholar 

  27. Nes, W.R., Krevitz, K., Joseph, J., Nes, W.D., Harris, B., Gibbons, G.F., and Patterson, G.W. (1977)Lipids 12, 511–527.

    CAS  Google Scholar 

  28. Selstam, E., and Jackson, A.O. (1983)J. Gen. Virol. 64, 1607–1613.

    Article  CAS  Google Scholar 

  29. Toriyama, S. (1976)Ann. Phytopathol. Soc. Jpn. 42, 494–496.

    Google Scholar 

  30. Federici, B.A. (1986) inThe Biology of Baculoviruses (Granados, R.R., and Federici, B.A., eds.) Vol. 1, pp. 61–85, CRC Press, Boca Raton, FL.

    Google Scholar 

  31. Minion, F.C., Coons, L.B., and Broome, J.R. (1979)J. Invertebr. Pathol. 34, 303–307.

    Article  CAS  Google Scholar 

  32. Granados, R.R., and Williams, K.A. (1986) inThe Biology of Baculoviruses (Granados, R.R., and Federici, B.A., eds.) Vol. 1, pp. 89–108, CRC Press, Boca Raton, FL.

    Google Scholar 

  33. Volkman, L.E., and Knudson, D.L. (1986) inThe Biology of Baculoviruses (Granados, R.R., and Federici, B.A., eds.) Vol. 1, pp. 109–127, CRC Press, Boca Raton, FL.

    Google Scholar 

  34. Ignoffo, C.M. (1966)J. Invertebr. Pathol. 8, 279–282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Donald, D.L.M., Ritter, K.S. Effect of host sterols on the sterol composition and virulence of a nuclear polyhedrosis virus ofHeliothis zea . Lipids 23, 1107–1113 (1988). https://doi.org/10.1007/BF02535274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535274

Keywords

Navigation