Skip to main content
Log in

Effects of cholesterol oxidation derivatives on cholesterol esterifying and cholesteryl ester hydrolytic enzyme activity of cultured rabbit aortic smooth muscle cells

  • Published:
Lipids

Abstract

The effects of 5 μg/ml of 25-hydroxycholesterol; cholestane-3β, 5α,6β-triol; and cholesterol on acyl CoA cholesterol acyltransferase, acid cholesteryl ester hydrolase and neutral cholesteryl ester hydrolase was studied in cultured rabbit aortic smooth muscle cells. After 1 hour incubation, 25-hydroxycholesterol resulted in a fourfold stimulation of acyl CoA cholesterol acyltrans-ferase activity. No stimulation by 25-hydroxycholesterol was noted before 15 minutes or after 5 hours of incubation. Neither cholestane-3β,5α,6β-triol nor cholesterol influenced acyl CoA cholesterol acyltransferase activity at any time interval. No significant effects of any of the sterols were noted on acid cholesteryl ester hydrolase or neutral cholesteryl ester hydrolase activity. The imbalance between acyl CoA cholesterol acyl trans-ferase and hydrolase activities induced by 25-hydroxycholesterol could result in cholesteryl ester accumulation by arterial smooth muscle cells, which may be associated with atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACAT:

acyl CoA cholesterol acyl transferase

ACEH:

acid cholesteryl ester hydrolase

HDL:

high density lipoprotein

HMGCoA:

hydroxy methyl glutaryl coenzyme A

NCEH:

neutral cholesteryl ester hydrolase

SVE:

sucrose containing 1.0 mM EDTA and 1% ethanol

triol:

cholestane-3β,5α,6β-triol

25-OH:

25-hydroxycholesterol

References

  1. Peng, S.K., Taylor, C.B., Hill, J.C., and Morin, R.J. (1985)Atherosclerosis 54, 121–133.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson, M.S., Price, M.G., Shamoo, A.E., and Heald, F.P. (1985)Atherosclerosis 57, 209–217.

    Article  PubMed  CAS  Google Scholar 

  3. Peng, S.K., Taylor, B., Tham, P., Werthessen, N.T., and Mikkelson, B. (1978)Arch. Pathol. Lab. Med. 102, 57–61.

    PubMed  CAS  Google Scholar 

  4. Peng, S.K., Tham, P., Taylor, C.B., and Mikkelson, B. (1979)Am. J. Clin. Nutr. 32, 1033–1042.

    PubMed  CAS  Google Scholar 

  5. Naseem, S.M., and Heald, F.P. (1987)Biochem. Internat. 14, 71–84.

    CAS  Google Scholar 

  6. Higley, N.A., and Taylor S.L. (1984)Food. Chem. Toxicol. 22, 983–992.

    Article  PubMed  CAS  Google Scholar 

  7. Hill, J.C., Peng, S.K., Morin, R.J., and Taylor, C.B. (1984)Exptl. Molec. Path. 41, 249–257.

    Article  CAS  Google Scholar 

  8. Peng, S.K., Hill, J.C., Morin, R.J., and Taylor, C.B. (1985)Proc. Soc. Exptl. Biol. Med. 180, 126–132.

    CAS  Google Scholar 

  9. Peng, S.K., Morin, R.J., Sentovich, S., and Taylor, C.B. (1985)J. Am. Oil Chem. Soc. 62, 634–635.

    Google Scholar 

  10. Kosykh, V.A., Lankin, V.Z., Podrez, E.A., Novikov, D.K., Volgushev, A., Victorov, A.V., Repin, V.S., and Smirnov, V.N. (1988)Lipids, in press.

  11. Hashimoto, S., Dayton, S., Alfin-Slater, R.B., Bui, P.T., Baker, N., and Wilson, L. (1974)Circ. Res. 34, 176–183.

    PubMed  CAS  Google Scholar 

  12. Brecher, P., and Chan, C.T. (1980)Biochim. Biophys. Acta 617, 458–471.

    PubMed  CAS  Google Scholar 

  13. Brown, M.S., Dana, S.E., and Goldstein, J.L. (1975)J. Biol. Chem. 250, 4025–4027.

    PubMed  CAS  Google Scholar 

  14. Hajjar, D.P., Falcone, D.J., Fowler, S., and Minick, C.R.Amer. J. Path. 102, 28–39.

  15. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  16. Hajjar, D.P., and Weksler, B.B. (1983)J. Lipid Res. 24, 1176–1185.

    PubMed  CAS  Google Scholar 

  17. Belfrage, P., and Vaughan, M. (1969)J. Lipid Res. 10, 341–344.

    PubMed  CAS  Google Scholar 

  18. Haley, N.J., Folwer, S., and DeDuve, C. (1980)J. Lipid Res. 21, 961–969.

    PubMed  CAS  Google Scholar 

  19. Lowry, D.H., Rosenbrough, N.J., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  20. Kandutsch, A.A., and Chen, H.W. (1977)J. Biol. Chem. 252, 409–415.

    PubMed  CAS  Google Scholar 

  21. Lichtenstein, A.H., and Brecher, P. (1983)Biochim. Biophys. Acta 751, 340–348.

    PubMed  CAS  Google Scholar 

  22. Drevon, C.A., Weinstein, D.B., and Steinberg, D. (1979)J. Biol. Chem. 255, 9128–9137.

    Google Scholar 

  23. Suckling, K.E., Tocher, D.R., Smellie, C.G., and Boyd, G.S. (1983)Biochim. Biophys. Acta 753, 422–429.

    PubMed  CAS  Google Scholar 

  24. Smith, A.G., Brooks, C.J.W., and Harland, W.A. (1974)Steroids Lipids Res. 5, 150–161.

    PubMed  CAS  Google Scholar 

  25. Tauber, J.P., Goldminz, D., and Gospodarowicz, D. (1981)Eur. J. Biochem. 119, 327–339.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Morin, R.J., Peng, SK. Effects of cholesterol oxidation derivatives on cholesterol esterifying and cholesteryl ester hydrolytic enzyme activity of cultured rabbit aortic smooth muscle cells. Lipids 24, 217–220 (1989). https://doi.org/10.1007/BF02535237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535237

Keywords

Navigation