Skip to main content
Log in

Dietary fish oil augments the function and fluidity of the intestinal brush-border membrane of the carp

  • Published:
Lipids

Abstract

Two groups of carps were raised on a commerical nutritionally complete diet: one was the control group, the other was fed the same diet enriched with 7% fish oil. The experiment lasted seven months (July through February), during which time the environmental temperature dropped gradually from 25°C to 13°C. Intestinal microvillus membranes were isolated after four and seven month feeding and examined for fluidity by fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene. The functionality of the membrane was assessed by the activity of the intrinsic enzyme alkaline phosphatase.

The experimental group exhibited increased membrane fluidity and elevated enzyme activity only when the environmental temperature decreased to 13°C. These changes in the membrane properties seemed to correlate with alterations in the fatty acid profile of the membrane phospholipids. Whereas the control group showed some increase in the n−3 C20∶5, C22∶5, and C22∶6 fatty acids most likely due to cold adaptation, the membranes isolated from the group fed fish oil showed a considerably higher level of these fatty acids reflecting the combined effect of the dietary manipulation and cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-diphenyl-1,3,5-hexatriene

PUFA:

polyunsaturated fatty acids

References

  1. Shinitzky, M. (1984) Membrane fluidity and cellular function, inPhysiology of Membrane Fluidity, (Shinitzky, M. ed.), Vol. 1, pp. 1–51, CRC Press, Boca Raton, Fl.

    Google Scholar 

  2. Bell, M.V., Henderson, R.J., and Sargent, J.R. (1986)Comp. Biochem. Physiol. 83B, 711–719.

    CAS  Google Scholar 

  3. Farkas, T., Csengeri, I., Majoros, F., and Olah, J. (1980)Aquaculture 20, 29–40.

    Article  CAS  Google Scholar 

  4. Miller, N.G.A., Hill, M.W., and Smith, M.W. (1976)Biochim. Biophys. Acta 455, 644–654.

    Article  PubMed  CAS  Google Scholar 

  5. Csengeri, I., Farkas, T., Majoros, F., Olah, J., and Szalay, M. (1978)Aquacultura Hungarica (Szarvas)1, 24–34.

    CAS  Google Scholar 

  6. Schachter, D., and Shinitzky, M. (1977)J. Clin. Invest. 59, 536–547.

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., and Crane, R.K. (1973)Biochim. Biophys. Acta 323, 98–112.

    Article  PubMed  CAS  Google Scholar 

  8. Brasitus, T.A., Schachter, D., and Mamouneas, T. (1979)Biochemistry 18, 4136–4144.

    Article  PubMed  CAS  Google Scholar 

  9. Shinitzky, M., and Barenholz, Y. (1978)Biochim. Biophys. Acta 515, 367–394.

    PubMed  CAS  Google Scholar 

  10. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  11. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  12. Miller, L. (1984). Gas-Liquid Chromatography of Cellular Fatty Acids as a Bacterial Identification Aid. Hewlett-Packard, Application Note 228–237 (Gas chromatography).

  13. Brasitus, T.A., Davidson, N.O., and Schachter, D. (1985)Biochim. Biophys. Acta 812, 460–472.

    Article  PubMed  CAS  Google Scholar 

  14. Cossins, A.R., and Prosser, C.L. (1982)Biochim. Biophys. Acta 687, 303–309.

    Article  PubMed  CAS  Google Scholar 

  15. Wodtke, E. (1981)Biochim. Biophys. Acta 640, 698–709.

    Article  PubMed  CAS  Google Scholar 

  16. Wodtke, E. (1978)Biochim. Biophys. Acta 529, 280–291.

    PubMed  CAS  Google Scholar 

  17. Hazel, J.R. (1984)Am. J. Physiol. 246, R460-R470.

    PubMed  CAS  Google Scholar 

  18. Stubbs, C.D., and Smith, A.D. (1984)Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  19. Farkas, T. (1984)Comp. Biochem. Physiol. 79B, 531–535.

    CAS  Google Scholar 

  20. Thompson, A.J., Sargent, J.R., and Owen, J.M. (1977)Comp. Biochem. Physiol. 56B, 223–228.

    Google Scholar 

  21. Smith, A.D., Conroy, D.M., Belin, J., and Stubbs, C.D. (1985)Proc. Nutr. Soc. 44, 201–209.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Behar, D., Cogan, U., Viola, S. et al. Dietary fish oil augments the function and fluidity of the intestinal brush-border membrane of the carp. Lipids 24, 737–742 (1989). https://doi.org/10.1007/BF02535214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535214

Keywords

Navigation