Skip to main content
Log in

Microsomal enzymes of cholesterol biosynthesis from lanosterol: A progress report

  • Symposium: Sterols Held at the AOCS Annual Meeting in New Orleans, LA, May 17–21, 1981
  • Published:
Lipids

Abstract

Our principal goal is the complete resolution and reconstitution of the microsomal enzymes of cholesterol biosynthesis. Elucidation of the enzymology has been achieved primarily through dissection of the membrane-bound, 19-step multienzymic process. This report describes the dissection approach through both interruption of specific steps and reconstitution of enzymes that catalyze oxidation of the 14α-methyl group. In earlier work, 4-demethylation was resolved into 3 component reactions catalyzed by: 4-methyl sterol oxidase (NAD[P] H- and O2-dependnet); steroid 4α-carboxylic acid decarboxylase (NAD-dependent); and 3-ketosteroid reductase (NADPH-dependent). The 3-ketosteroid reductase and decarboxylase have been solubilized with Lubrol WX and deoxycholate, respectively, and characterized. The 4-methyl sterol oxidase (cytochrome b5-dependent) recently has been solubilized with Renex 690. This study represents successful elucidation of a microsomal enzyme sequence by interruption of the central 10-step segment of the multienzymic formation of cholesterol from lanosterol. The initial C-32 oxidative reaction of 14α-methyl group elimination is catalyzed by a from of cytochrome P-450 that is induced by isosafrole. The induced cytochrome P-450 has been solubilized with Emulgen 913 and purified to homogeneity (17 nmol of cytochrome/mg protein). 24,25-Dihydrolanosterol is oxidized by combination of cytochrome P-450 reductase, hematin, NADPH, glutathione, and the purified, isosafrole-induced cytochrome in an artificial liposome. Oxidation product identification is underway. This study represents successful elucidation of a microsomal multienzymic sequence by solubilization and reconstitution of a segment of the pathway. The remaining enzymes under study are the Δ8→Δ7 isomerase and 3 NADPH-dependent double bond reductases that catalyze reduction of: Δ7, Δ14- Δ24-sterol double bonds. Purification of these nonoxygenrequiring enzymes is in progress. Resolution of the enzymes has demonstrated unequivocally that cholesterol synthesis via this pathway could not have appeared biologically until membranes containedboth the cytochrome P-450- and cytochrome b5-electron transport enzymes. Chemically, all enzymic attacks in the formation of cholesterol from lanosterol appear to be initiated on the α-face of the relatively planar steroids. Thus, considerable genetic pressure must have been needed for the stereospecific clearing of the steroidal α-face to form the mature membrane component, cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaylor, J.L. (1972) Adv. Lipid Res. 10, 89–141.

    PubMed  CAS  Google Scholar 

  2. Gaylor, J.L. (1974) in MTP International Review of Science, Biochemistry Section (Lipids) (Goodwin, T.W., ed.) Vol. 1, pp. 1–42, Medical and Technical Publishing Co., Oxford, England.

    Google Scholar 

  3. Gaylor, J.L. (1981) in Polyisopropenoid Biosynthesis (Porter, J.W., ed.) Vol. 1, pp. 481–543, John Wiley and Sons, New York, NY.

    Google Scholar 

  4. Bloch, K.B. (1965) Science 150, 19–28.

    Article  PubMed  CAS  Google Scholar 

  5. Miller, W.L., Kalafer, M.E., Gaylor, J.L., and Delwiche, C.V. (1967) Biochemistry 6, 2673–2678.

    Article  PubMed  CAS  Google Scholar 

  6. Miller, W.L., and Gaylor, J.L. (1970) J. Biol. Chem. 245, 5369–5374.

    PubMed  CAS  Google Scholar 

  7. Miller, W.L., and Gaylor, J.L. (1970) J. Biol. Chem. 245, 5375–5381.

    PubMed  CAS  Google Scholar 

  8. Miller, W.L., Brady, D.R., and Gaylor, J.L. (1971) J. Biol. Chem. 246, 5147–5153.

    PubMed  CAS  Google Scholar 

  9. Gaylor, J.L., Miyake, Y., and Yamano, T. (1975) J. Biol. Chem. 249, 1980–1987.

    Google Scholar 

  10. Rahimtula, A.D., and Gaylor, J.L. (1972) J. Biol. Chem. 247, 9–15.

    PubMed  CAS  Google Scholar 

  11. Billheimer, J.T., Alcorn, M., and Gaylor, J.L. (1981) Arch. Biochem. Biophys. 211, 430–438.

    Article  PubMed  CAS  Google Scholar 

  12. Gibbons, G.F., and Mitropoulos, K.A. (1973) Eur. J. Biochem. 40, 267–273.

    Article  PubMed  CAS  Google Scholar 

  13. Gaylor, J.L., and Mason, H.S. (1968) J. Biol. Chem. 243, 4966–4972.

    PubMed  CAS  Google Scholar 

  14. Aoyama, Y., Yoshida, Y., Sato, R., Susani, M., and Ruis, H. (1981) Biochim. Biophys. Acta 663, 194–202.

    PubMed  CAS  Google Scholar 

  15. Fukushima, H., Grinstead, G.F., and Gaylor, J.L. (1981) J. Biol. Chem. 256, 4822–4826.

    PubMed  CAS  Google Scholar 

  16. Gibbons, G.F., Bullinger, C.R., and Mitropoulos, K.A. (1979) Biochem. J. 183, 309–315.

    PubMed  CAS  Google Scholar 

  17. Trocha, P.J., Jasne, S.J., and Sprinson, D.B. (1974) Biochem. Biophys. Res. Commun. 59, 666–671.

    Article  PubMed  CAS  Google Scholar 

  18. Aoyama, Y., and Yoshida, Y. (1978) Biochem. Biophys. Res. Commun. 85, 28–34.

    Article  PubMed  CAS  Google Scholar 

  19. Comai, K., and Gaylor, J.L. (1973) J. Biol. Chem. 248, 4947–4955.

    PubMed  CAS  Google Scholar 

  20. Jefcoate, C.R.E., and Gaylor, J.L. (1969) Biochemistry 8, 3464–3472.

    Article  PubMed  CAS  Google Scholar 

  21. Gaylor, J.L., Moir, N.J., Seifried, H.E., and Jefcoate, C.R.E. (1970) J. Biol. Chem. 245, 5511–5513.

    PubMed  CAS  Google Scholar 

  22. Gaylor, J.L., Hsu, S.T., Delwiche, C.V., Comai, K., and Seifried, H.E. (1973) in Oxidases and Related Redox Systems (King, T.E., Mason, H.S., and Morrison, M., eds.) Vol. 2, pp. 431–444, Univ. Park Press, Baltimore, MD.

    Google Scholar 

  23. Dickins, M., Bridges, J.W., Elcombe, C.R., and Netter, K.J. (1978) Biochem. Biophys. Res. Commun. 80, 89–96.

    Article  PubMed  CAS  Google Scholar 

  24. Fisher, G.J., Fukushima, H., and Gaylor, J.L. (1981) J. Biol. Chem. 256, 4388–4394.

    PubMed  CAS  Google Scholar 

  25. Borchert, P., Miller, J.A., Miller, E.C., and Shires, T.K. (1973) Cancer Res. 33, 590–600.

    PubMed  CAS  Google Scholar 

  26. Billheimer, J.T., and Gaylor, J.L. (1980) J. Biol. Chem. 255, 8128–8135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Trazaskos, J.M., Bowen, W.D., Fisher, G.J. et al. Microsomal enzymes of cholesterol biosynthesis from lanosterol: A progress report. Lipids 17, 250–256 (1982). https://doi.org/10.1007/BF02535112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535112

Keywords

Navigation