Skip to main content
Log in

Myelin subfractions isolated from mouse brain: Analysis of the lipid composition at three developmental stages

  • Published:
Lipids

Abstract

Lipids were examined in whole myelin and 8 myelin subfractions isolated from mouse brain at 18–24, 44–48 and 80–90 days of age. Relative to protein, total lipid was lowest in whole myelin isolated from the oldest animals as well as from subfractions isolated at greater sucrose densities, thus partially accounting for the observed myelin subfraction distribution pattern which shifted during development from an average peak density banding between 0.55 and 0.65 M sucrose to one banding between 0.60 and 0.70 M sucrose. Whole myelin and each myelin subfraction isolated at one age contained nearly the same ratio of sterol and phospholipid to galactolipid; these ratios decreased uniformly during development suggesting enrichment with galactolipid in all myelin subfractions. Sulfatide, as percentage of total galactolipid, was relatively constant during development and appeared to be slightly enriched in the denser myelin subfractions. The findings suggest that regardless of the origin(s) of the subfractions, an age-related mechanism exists in the central nervous system which modifies myelin lipid composition relatively uniformly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthieu, J.M., Quarles, R.H., Brady, R.O., and Webster, H. DeF. (1973) Biochim. Biophys. Acta 329, 305–317.

    PubMed  CAS  Google Scholar 

  2. Hofteig, J.H., and Druse, M.J. (1976) Life Sci. 18:543–552.

    Article  PubMed  CAS  Google Scholar 

  3. Benjamins, J.A., Miller, K., and Morell, P. (1976a) J. Neurochem. 27, 565–570.

    PubMed  CAS  Google Scholar 

  4. Benjamins, J.A., Gray, M., and Morell, P. (1976b) J. Neurochem. 27, 571–575.

    PubMed  CAS  Google Scholar 

  5. Cuzner, M.L., and Davison, A.N. (1968) Biochem. J. 106, 29–34.

    PubMed  CAS  Google Scholar 

  6. Adams, D.H., and Fox, M.E. (1969) Brain Res. 14, 647–661.

    Article  PubMed  CAS  Google Scholar 

  7. Mehl, E. (1972) Adv. Exp. Biol. Med. 32, 157–170.

    CAS  Google Scholar 

  8. McMillan, P.N., Williams, N.I., Kaufman, B., and Day, E.D. (1972) J. Neurochem. 19, 1839–1848.

    Article  PubMed  CAS  Google Scholar 

  9. Benjamins, J.A., Miller, K., and McKhann, G.M. (1973) J. Neurochem. 20, 1589–1603.

    Article  PubMed  CAS  Google Scholar 

  10. Fujimoto, K., Roots, B.I., Burton, R.M., and Agrawal, H.C. (1976) Biochim. Biophys. Acta 426, 659–668.

    Article  PubMed  CAS  Google Scholar 

  11. Sheads, L.D., Eby, M.J., Sampugna, J., and Douglass, L.W. (1977) J. Neurobiol. 8, 67–89.

    Article  PubMed  CAS  Google Scholar 

  12. Bourre, J.M., Pollet, S., Daudu, O., Le Saux, F., and Baumann, N. (1977) Biochimie 59, 819–824.

    PubMed  CAS  Google Scholar 

  13. Waehneldt, T.V. (1978) Brain Res. Bull. 3, 37–44.

    Article  PubMed  CAS  Google Scholar 

  14. Norton, W.T., and Poduslo, S.E. (1973) J. Neurochem. 21, 749–757.

    Article  PubMed  CAS  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Hess, H.H., and Lewin, E. (1965) J. Neurochem. 12, 205–211.

    Article  PubMed  CAS  Google Scholar 

  17. Folch, J., Lees, M., and Sloane-Stanley, G. (1957) J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  18. Ames, B. (1966) Methods Enzymol. 8, 115–118.

    Article  CAS  Google Scholar 

  19. Rudel, L., and Morris, M. (1973) J. Lipid Res. 14, 364–366.

    PubMed  CAS  Google Scholar 

  20. Rouser, G., Kritchevsky, G., and Yamamoto, A. (1976) in Lipid Chromatographic Analyses (Marinetti, B., ed.) Vol. 3, pp. 713–776, Marcel Dekker Inc., New York, NY.

    Google Scholar 

  21. Kean, E. (1968) J. Lipid Res. 9, 319–327.

    PubMed  CAS  Google Scholar 

  22. Schnedcor, G.W., and Cochran, W.G. (1969) in Statistical Methods, 6th edn., Iowa State University Press, Ames, IA.

    Google Scholar 

  23. Burton, R.M., and Agrawal, H.C. (1975) in Biomembranes-Lipids, Proteins, and Receptors (Burton, R.M., and Packer, L., eds.) pp. 27–50, Proc. Nato Adv. Study Inst., B1-Science Publications Division, Webster Groves, MO.

    Google Scholar 

  24. Reiber, H., and Waehneldt, T.V. (1978) Neurosci. Lett. 8, 177–181.

    Article  CAS  Google Scholar 

  25. Linington, C., Waehneldt, T.V., and Neuhoff, V. (1980) Neurosci. Lett. 20, 211–215.

    Article  PubMed  CAS  Google Scholar 

  26. Koul, O., Chou, K.H., and Jungalwala, F.B. (1980) Biochem. J. 186, 959–969.

    PubMed  CAS  Google Scholar 

  27. Agrawal, H.C., Trotter, J.L., Burton, R.M., and Mitchell, R.F. (1974) Biochem. J. 140, 99–109.

    PubMed  CAS  Google Scholar 

  28. Waehneldt, T.V., Mattheiu, J.M., and Neuhoff, V. (1977) Brain Res. 138, 29–43.

    Article  PubMed  CAS  Google Scholar 

  29. Poduslo, S.E. (1975) J. Neurochem. 24,647–654.

    PubMed  CAS  Google Scholar 

  30. Zanetta, J., Zenda, P., Gombos, G., and Morgan, I. (1972) J. Neurochem. 19, 881–883.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rhein, L.D., Sampugna, J. Myelin subfractions isolated from mouse brain: Analysis of the lipid composition at three developmental stages. Lipids 16, 502–507 (1981). https://doi.org/10.1007/BF02535048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535048

Keywords

Navigation