Skip to main content
Log in

Temperature acclimation in the crayfish: Effects on phospholipid fatty acids

  • Published:
Lipids

Abstract

Acclimation to different temperatures by a poikilothermous animal must include modification of its membrane lipids to maintain the proper physical properties. The simplest way to achieve this acclimation would seem to be by modification of the phospholipid fatty acids. In a freshwater cray-fish,Procambarus clarkii, rapid changes in the degree of unsaturation of newly synthesized phospholipid fatty acids were correlated with changes in environmental temperature, both in whole animals and in slices of hepatopancreas tissue. At 5 C, the rate of fatty acid synthesis was about half that occurring at 23 C. Hepatopancreas tissue from animals acclimated to either 5 C or 23 C, when incubated for 2 hr at 5 C, incorporated a higher percentage of exogenous [1-14C] acetate into polyunsaturated acids (27–38% of the radioactivity in total fatty acids) than when incubated at 23 C (12–14%); conversely, more saturated fatty acids were synthesized at 23 C (73–80% vs 51–73%). The higher average unsaturation of the fatty acids biosynthesized at 5 C constitutes an effective response to the animal's need for modification of lipids to maintain adequate membrane function at the lower environmental temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hazel, J.R., Comp. Biochem. Physiol. 43B:837, 863 (1972).

    Google Scholar 

  2. MacLennan, D.H., and P.C. Holland, in “The Enzymes of Biological Membranes,” Vol. 3, edited by A. Martonosi, Plenum Press, New York and London, 1976, pp. 228–30.

    Google Scholar 

  3. Warren, G.B., and J.C. Metcalfe, in “Structural and Kinetic Approach to Plasma Membrane Function,” edited by C.N. Nicolau and A. Paraf, Springer-Verlag, Berlin/Heidelberg/New York, 1977, pp. 188–200.

    Google Scholar 

  4. Hochachka, P.W., and G.N. Somero, “Strategies of Biochemical Adaptation,” W.B. Saunders Company, Philadelphia/London/Toronto, 1973, pp. 180–81, 253–60.

    Google Scholar 

  5. Chapman, D., in “Biomembranes,” Vol. 7, edited by H. Eisenberg, E. Katchalski-Katzir and L.A. Manson, Plenum Press, New York and London, 1975, pp. 1–9.

    Google Scholar 

  6. Klein, R.A., M.J. Moore and W.H. Smith, Biochim. Biophys. Acta 233:420 (1971).

    Article  PubMed  CAS  Google Scholar 

  7. Linden, C.D., and C.F. Fox, J. Supramol. Struct. 1:535 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. McElhaney, R.N., J. Mol. Biol. 84:145 (1974).

    Article  PubMed  CAS  Google Scholar 

  9. McElhaney, R.N., and K.A. Souza, Biochim. Biophys. Acta 443:348 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. Baldassare, J.J., G.M. Brenckle, M. Hoffman and D.F. Short, J. Biol. Chem. 252:8797 (1977).

    PubMed  CAS  Google Scholar 

  11. Johnston, P.V., and B.I. Roots, Comp. Biochem. Physiol. 11:303 (1964).

    Article  PubMed  CAS  Google Scholar 

  12. Farkas, T., and I. Csengeri, Lipids 11:401 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. Cossins, A.R., Biochim. Biophys. Acta 470:395 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. Cossins, A.R., Lipids 11:307 (1976).

    PubMed  CAS  Google Scholar 

  15. Miller, N.G.A., M.W. Hill and M.W. Smith, Biochim. Biophys. Acta 455:644 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. Wodtke, E., Biochim. Biophys. Acta 529:280 (1978).

    PubMed  CAS  Google Scholar 

  17. Chapelle, S., J. Exp. Zool. 294:337 (1978).

    Article  Google Scholar 

  18. Riegel, J.A., Calif. Fish Game 45:29 (1959).

    Google Scholar 

  19. van Harreveld, A., Proc. Soc. Exp. Biol. Med. 34:428 (1930).

    Google Scholar 

  20. Folch, J., M. Lees and G.H. Sloane-Stanley, J. Biol. Chem. 226:497 (1957).

    PubMed  CAS  Google Scholar 

  21. Farkas, T., J.C. Nevenzel and A.A. Benson, Lipids 8:728 (1973).

    Article  CAS  Google Scholar 

  22. Zandee, D.I., Arch. Int. Physiol. Biochim. 74:435 (1966).

    PubMed  CAS  Google Scholar 

  23. Wolfe, D.A., P.V. Rao and D.G. Cornwell, J. Am. Oil Chem. Soc. 42:633 (1965).

    PubMed  CAS  Google Scholar 

  24. Morris, R.J., and J.R. Sargent, Mar. Biol. 22:77 (1973).

    Article  CAS  Google Scholar 

  25. Moreno, V.J., J.E.A. de Moreno and R.R. Brenner, Lipids 14:313 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. Brenner, R.R., Mol. Cell. Biochem. 3:41 (1974).

    Article  PubMed  CAS  Google Scholar 

  27. de Torengo, M.P., and R.R. Brenner, Biochim. Biophys. Acta 424:36 (1976).

    Google Scholar 

  28. Kasai, R., Y. Kitajima, C.E. Martin, Y. Nozawa, L. Skriver and G.A. Thompson, Jr., Biochemistry 15:522 (1976).

    Google Scholar 

  29. Sinensky, M., J. Bacteriol. 106:449 (1971).

    PubMed  CAS  Google Scholar 

  30. Okuyama, H., K. Yamada, Y. Kameyama, H. Ikezawa, Y. Kametsu and S. Nojima, Biochemistry 16:2668 (1977).

    Article  PubMed  CAS  Google Scholar 

  31. Gurr, M.I., and A.T. James, “Lipid Biochemistry: an Introduction,” Cornell University Press, Ithaca, NY 1971, p. 137.

    Google Scholar 

  32. Brichon, G., S. Chapelle and G. Zwingelstein, Comp. Biochem. Physiol. 67B:647 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done at the Laboratory of Nuclear Medicine and Radiation Biology, University of California, Los Angeles, CA 90024.

About this article

Cite this article

Farkas, T., Nevenzel, J.C. Temperature acclimation in the crayfish: Effects on phospholipid fatty acids. Lipids 16, 341–346 (1981). https://doi.org/10.1007/BF02534959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534959

Keywords

Navigation