Skip to main content
Log in

The effect of mengovirus infection on lipid synthesis in cultured ehrlich ascites tumor cells

  • Published:
Lipids

Abstract

The concept of generally increased lipid synthesis during the initial 2/3 of picornaviral infectious cycles, held by several authors, needs differentiation. In mengovirus-infected Ehrlich ascites tumor cells, an increase in the rate of synthesis of phosphatidylcholine could be confirmed, but for phosphatidylethanolamine constant to decreasing rates of synthesis were found. Moreover, phosphatidylinositol was increasingly synthesized in the midst of the infectious cycle. The changes observed might have their functional expression in the proliferation of smooth cytoplasmic membrane systems that provide the structural framework for the replication of picornaviral RNA and virus assembly. The alterations in the labeling patterns of phosphatidylinositol, phosphatidylglycerol and diphosphatidylglycerol late in virus infection point to increased turnover of these compounds, possibly mediated by phospholipase D. The formation of lysophosphatidylcholine (cytolytic effect) and bis(monoacylglyceryl)phosphate in the final phase of the infectious cycle might be correlated with the liberation of lysosomal enzymes and the development of the cytopathic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baltimore, D., Franklin, R.M., and Callender, J. (1963)Biochim. Biophys. Acta 76, 425–430.

    Article  PubMed  CAS  Google Scholar 

  2. Cornatzer, W.E., Sandstrom, W., and Fischer, R.G. (1961)Biochim. Biophys. Acta 49, 414–415.

    Article  PubMed  CAS  Google Scholar 

  3. Dales, S., Eggers, H.J., Tamm, I., and Palade, G.E. (1965)Virology 26, 379–389.

    Article  PubMed  CAS  Google Scholar 

  4. Mattern, C.F.T., and Daniel, W.A. (1965)Virology 26, 646–663.

    Article  PubMed  CAS  Google Scholar 

  5. Penman, S. (1965)Virology 25, 148–152.

    Article  Google Scholar 

  6. Amako, K., and Dales, S. (1967)Virology 32, 201–205.

    Article  PubMed  CAS  Google Scholar 

  7. Plageman, P.G.W., Cleveland, P.H., and Shea, M.A. (1970)J. Virol. 6, 800–812.

    Google Scholar 

  8. Mosser, A.G., Caliguiri, L.A., Scheid, A.S., and Tamm, I. (1972)Virology 47, 30–38.

    Article  PubMed  CAS  Google Scholar 

  9. Mosser, A.G., Caliguiri, L.A., and Tamm, I. (1972)Virology 47, 39–47.

    Article  PubMed  CAS  Google Scholar 

  10. Halperen, S. (1983)J. Gen. Virol. 64, 491–497.

    PubMed  CAS  Google Scholar 

  11. Bablanian, R., Eggers, H.J., and Tamm, I. (1965)Virology 26, 100–113.

    Article  PubMed  CAS  Google Scholar 

  12. Plageman, P.G.W., and Swim, H.E. (1966)J. Bacteriol. 91, 2317–2326.

    Google Scholar 

  13. Penman, D., Becker, Y., and Darnell, J.E. (1964)J. Mol. Biol. 8, 541–555.

    CAS  PubMed  Google Scholar 

  14. Dalgarno, L., and Martin, E.M. (1965)Virology 26, 450–465.

    Article  PubMed  CAS  Google Scholar 

  15. Robert, W.K., Newman, J.F.E., and Rueckert, R.R. (1966)J. Mol. Biol. 15, 92–101.

    Article  Google Scholar 

  16. Caliguiri, L.A., and Compans, R.W. (1973)J. Gen. Virol. 21, 99–108.

    PubMed  CAS  Google Scholar 

  17. Etchison, D., and Ehrenfeld, E. (1981)Virology 111, 33–46.

    Article  PubMed  CAS  Google Scholar 

  18. Takegami, T., Semler, B.L., Anderson, C.W., and Wimmer, E. (1983)Virology 128, 33–47.

    Article  PubMed  CAS  Google Scholar 

  19. Takegami, T., Kuhn, R.J., Anderson, C.W., and Wimmer, E. (1983)Proc. Natl. Acad. Sci. USA 80, 7447–7451.

    Article  PubMed  CAS  Google Scholar 

  20. Zeichhardt, H., Habermehl, K.-O., and Wetz, K. (1983)J. Gen. Virol. 64, 951–955.

    PubMed  CAS  Google Scholar 

  21. Tershak, D.R. (1984)J. Virol. 52, 777–783.

    PubMed  CAS  Google Scholar 

  22. Caliguiri, L.A., and Tamm, I. (1969)Science 166, 885–886.

    Article  PubMed  CAS  Google Scholar 

  23. Caliguiri, L.A., and Tamm, I. (1970)Virology 42, 100–111.

    Article  PubMed  CAS  Google Scholar 

  24. Caliguiri, L.A., and Tamm, I. (1970)Virology 42, 112–122.

    Article  PubMed  CAS  Google Scholar 

  25. Van Venrooij, W.J.W., Henshaw, E.C., and Hirsch, C.A. (1970)J. Biol. Chem. 245, 5947–5953.

    Google Scholar 

  26. Egberts, E., Hackett, P.B., and Traub, P. (1976)Hoppe-Seyler's Z. Physiol. Chem. 357, 1779–1792.

    CAS  Google Scholar 

  27. Phillips, H.J. (1973) inTissue Culture. Methods and Applications (Kruse, P.F., and Patterson, M.K. Jr., eds.) pp. 406–408, Academic Press, New York.

    Google Scholar 

  28. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  29. Chen, P.S., Toribara, T.Y., and Warner, H. (1956)Anal. Biochem. 28, 1756–1758.

    CAS  Google Scholar 

  30. Schimmel, H. (1982)Untersuchungen zum Einfluss der Mengovirus-Infektion auf die Lipidsynthese von Ehrlich Ascites Tumorzellen, Ph.D. Thesis, University of Hamburg, Federal Republic of Germany.

    Google Scholar 

  31. Röschlau, P., Bernt, E., and Gruber, W. (1974)Z. Klin. Chem. Klin. Biochem. 12, 403–407.

    PubMed  Google Scholar 

  32. Schimmel, H. (1981)J. High Res. Chromatogr. Chromatogr. Commun. 4, 537–538.

    Article  CAS  Google Scholar 

  33. Skipski, V.P., Peterson, R.F., and Barclay, M. (1964)Biochem. J. 90, 374–378.

    PubMed  CAS  Google Scholar 

  34. Wagner, H., Hörhammer, L., and Wolff, P. (1961)Biochem. Z. 334, 175–184.

    PubMed  CAS  Google Scholar 

  35. Dittmer, J.C., and Lester, R.L. (1964)J. Lipid Res. 5, 126–127.

    CAS  Google Scholar 

  36. Dawson, R.M.C. (1960)Biochem. J. 75, 45–53.

    PubMed  CAS  Google Scholar 

  37. Poorthuis, B.H.J.M., and Hostetler, K.Y. (1978)J. Lipid Res. 19, 309–315.

    PubMed  CAS  Google Scholar 

  38. Poorthuis, B.H.J.M., Yazaki, P.J., and Hostetler, K.Y. (1976)J. Lipid Res. 17, 433–437.

    PubMed  CAS  Google Scholar 

  39. Eberlein, K., and Gercken, G. (1975)J. Chromatogr. 106, 425–427.

    Article  PubMed  CAS  Google Scholar 

  40. Koch-Kallnbach, M.E., and Diringer, H. (1977)Hoppe-Seyler's Z. Physiol. Chem. 358, 367–375.

    PubMed  CAS  Google Scholar 

  41. Nelson, W.J., Nelson, S.J., and Traub, P. (1981)Hoppe-Seyler's Z. Physiol. Chem. 362, 903–918.

    PubMed  CAS  Google Scholar 

  42. Michell, R.H. (1975)Biochim. Biophys. Acta 415, 81–127.

    PubMed  CAS  Google Scholar 

  43. Michell, R.H., Jafferji, S.S., and Jones, L.M. (1977) inAdvances in Experimental Medicine and Biology (Bazan, N.G., Brenner, R.R., and Giusto, N.M., eds.) Vol. 83, pp. 447–464, Plenum Press, New York.

    Google Scholar 

  44. Waku, K., Shibata, T., Kato, H., Tsutsui, K., and Nakazawa, Y. (1982)Biochim. Biophys. Acta 710, 39–44.

    PubMed  CAS  Google Scholar 

  45. Farese, R.V. (1983)Endocr. Rev. 4, 78–95.

    Article  PubMed  CAS  Google Scholar 

  46. Nishizuka, Y. (1984)Science 225, 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  47. Berridge, M.J., and Irvine, R.F. (1984)Nature 312, 315–321.

    Article  PubMed  CAS  Google Scholar 

  48. Amako, K., and Dales, S. (1967)Virology 32, 184–200.

    Article  PubMed  CAS  Google Scholar 

  49. Bienz, K., Egger, K., Rasser, Y., and Bossart, W. (1980)Virology 100, 390–399.

    Article  PubMed  CAS  Google Scholar 

  50. Diringer, H., Willems, W.R., and Rott, R. (1978)J. Gen. Virol. 40, 471–474.

    PubMed  CAS  Google Scholar 

  51. Egberts, E., Hackett, P.B., and Traub, P. (1977)J. Virol. 22, 591–597.

    PubMed  CAS  Google Scholar 

  52. Wherrett, J.R., and Huterer, S. (1972)J. Biol. Chem. 247, 4114–4120.

    PubMed  CAS  Google Scholar 

  53. Flanagan, J.F. (1966)J. Bacteriol. 91, 789–797.

    PubMed  CAS  Google Scholar 

  54. Allison, A.C., and Sandelin, K. (1963)J. Exp. Med. 117, 879–887.

    Article  PubMed  CAS  Google Scholar 

  55. Matsuzawa, Y.B., Poorthuis, J.H.M., and Hostetler, K.Y. (1978)J. Biol. Chem. 253, 6650–6653.

    PubMed  CAS  Google Scholar 

  56. Saito, M., and Kanfer, J. (1975)Arch. Biochem. Biophys. 169, 318–323.

    Article  PubMed  CAS  Google Scholar 

  57. Galliard, D. (1980) inThe Biochemistry of Plants (Stumpf, P.K., and Conn, E.E., eds.) Vol. 4, pp. 101–105, Academic Press, New York.

    Google Scholar 

  58. Gschwender, H.H., and Traub, P. (1979)J. Gen. Virol. 42, 439–442.

    Article  PubMed  CAS  Google Scholar 

  59. Hokin-Neaverson, M. (1977) inAdvances in Experimental Medicine and Biology (Bazan, N.G., Brenner, R.R., and Giusto, N.M., eds.) Vol. 83, pp. 429–446, Plenum Press, New York.

    Google Scholar 

  60. Pickard, R.M., and Hawthorne, J.N. (1978)J. Neurochem. 30, 145–155.

    Article  PubMed  CAS  Google Scholar 

  61. Brophy, B.J., Burbach, P., Nelemans, S.A., Westerman, J., Wirtz, K.W.A., and Van Deenen, L.L.M. (1978)Biochem. J. 174, 413–420.

    PubMed  CAS  Google Scholar 

  62. Monaco, M.E. (1982)J. Biol. Chem. 257, 2137–2139.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Schimmel, H., Traub, P. The effect of mengovirus infection on lipid synthesis in cultured ehrlich ascites tumor cells. Lipids 22, 95–103 (1987). https://doi.org/10.1007/BF02534860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534860

Keywords

Navigation