Skip to main content
Log in

Effect of methylmercuric chloride on gangliosides of mouse neuroblastoma cells in culture

  • Communications
  • Published:
Lipids

Abstract

The effect of methylmercuric chloride (CH3 HgCl) on the levels of gangliosides in mouse neuroblastoma cells (NBP2) in culture was studied. The treatment of NB cells with low concentrations (0.1 μM and 0.2 μM) of CH3 HgCl, which did not affect the growth rate or morphology, caused an increase in the level of the GM3 ganglioside without changing the level of other gangliosides. The treatment of NB cells with higher concentrations (0.5 μM and 1 μM) of CH3 HgCl, which inhibited the growth of NB cells, caused a decrease in the level of GM3 and an increase in the level of GM2. These results show that alterations in the levels of specific gangliosides can be observed in cells which do not exhibit any detectable change in growth rate or morphology. This change may be associated with subtle changes in brain functions, including behavioral and psychological changes, after exposure to low concentrations of organic mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeuchi, T. (1968) in Minamata Disease (Kutsuma, M., ed.) pp. 229–252, University of Tokyo Press, Tokyo.

    Google Scholar 

  2. Rustam, H., and Hamdi, T. (1974) Brain 97, 499–510.

    Google Scholar 

  3. Aberg, B., Ekman, L., Falk, P., Greitz, J., Presson, G., and Snihs, J. (1969) Arch. Environ. Health 19, 478–484.

    PubMed  CAS  Google Scholar 

  4. Berlin, M., and Ulberg, S. (1963) Arch. Environ. Health 6, 589–616.

    PubMed  CAS  Google Scholar 

  5. Berlin, M., Fazackerlye, J., and Norberg, G. (1969) Arch. Environ. Health 18, 719–729.

    PubMed  CAS  Google Scholar 

  6. Vallee, B.L., and Ulner, D.D. (1972) Annu. Rev. Biochem. 41, 91–128.

    Article  PubMed  CAS  Google Scholar 

  7. Ramanujam, M., and Prasad, K.N. (1979) Biochem. Pharmacol. 28, 2979–2984.

    Article  PubMed  CAS  Google Scholar 

  8. Ramanujam, M., and Prasad, K.N. (1980) Biochem. Pharmacol. 29, 539–552.

    Article  PubMed  CAS  Google Scholar 

  9. Spuhler, K., and Prasad, K.N. (1980) Biochem. Pharmacol. 29, 201–203.

    Article  PubMed  CAS  Google Scholar 

  10. Prasad, K.N., Nobles, E., and Spuhler, K. (1979) Environ. Res. 19, 321–338.

    Article  PubMed  CAS  Google Scholar 

  11. Prasad, K.N., Harrington, M.E., and Bondy, S.C. (1979) Toxicol. Lett. 4, 373–377.

    Article  CAS  Google Scholar 

  12. Prasad, K.N., Mandal, B., Waymire, J.C., Lees, G.J., Vernadakis, A., and Weiner, N. (1973) Nature New Biol. 241, 117–120.

    PubMed  CAS  Google Scholar 

  13. Prasad, K.N., Nobles, E., and Ramanujam, M. (1979) Environ. Res. 19, 189–201.

    Article  PubMed  CAS  Google Scholar 

  14. Koerker, R.L. (1980) Toxicol. Appl. Pharmacol. 53, 458–469.

    Article  PubMed  CAS  Google Scholar 

  15. Eagle, H. (1974) in Control of Proliferation in Animal Cells (Clarkson, B., and Baserga, R., eds.) pp. 1–11, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  16. Suzuki, K. (1964) Life Sci. 3, 1227–1233.

    Article  PubMed  CAS  Google Scholar 

  17. Folch, J., Lee, M., and Sloane-Stanlye. J. (1957). J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  18. Dreyfus, H., Louis, J.C., Harth S., and Mandel, P. (1980) Neuroscience 5, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  19. Miettinen, T., and Takki-Luukkaine, L.T. (1959) Acta Chem. Scand. 13, 856–858.

    Article  CAS  Google Scholar 

  20. Harth, S., Dreyfus, H., Urbana, P.F., and Mandel, P. (1978) Anal. Biochem. 86, 543–551.

    Article  PubMed  CAS  Google Scholar 

  21. Smid, F., and Reinisova, J. (1973) J. Chromatogr. 86, 200.

    Article  PubMed  CAS  Google Scholar 

  22. Rebel, G., Ciesielski-Treska, J., and Mandel, P. (1973) C.R. Acad. Sci. (Paris) 277, 1193–1195.

    CAS  Google Scholar 

  23. Ciesielski-Treska, J., Robert, J., Rebel, G. and Mandel, P. (1977) Differentiation 8, 31–37.

    Article  PubMed  CAS  Google Scholar 

  24. Yogeeswaran, G., Murray R.K., Pearson, M.L., Sanwal, B.D., McMorris, F.A., and Ruddle, F.T. (1973). J. Biol. Chem. 248, 1231–1239.

    PubMed  CAS  Google Scholar 

  25. Dawson, G., Kemp, S.F., Stoolmiller, A.C., and Dorfman, A. (1971) Biochem. Biophys. Res. Commun. 44 687–694.

    Article  PubMed  CAS  Google Scholar 

  26. Dawson, G., Sundarraj, N., and Pfeiffer, S.E. (1977) J. Biol. Chem. 252, 2777–2779.

    PubMed  CAS  Google Scholar 

  27. Duffar, R.O., Fishman, P.H., Bradley, R.M., Lauter, C.J., Brady, R.O., and Trams, E.G. (1977) J. Neurochem. 28, 1161–1166.

    Google Scholar 

  28. Dawson, G., Lawhon, R., and Miller, R.J. (1980) J. Biol. Chem. 255, 129–137.

    PubMed  CAS  Google Scholar 

  29. Schengraound, C.L., and Sheffler, B.A. (1982) Oncology 39, 185–190.

    Article  Google Scholar 

  30. Grundt, I.K., Offner, H., Kowat, G., and Clausen, J. (1974) Environ. Physiol. Biochem. 4, 166.

    PubMed  CAS  Google Scholar 

  31. Grundt, I.K., Stensland, E., and Syversen, T.L.M. (1980) J. Lipid Res. 21, 162–168.

    PubMed  CAS  Google Scholar 

  32. Grundt, I.K., and Neskovic, N.M. (1980) Environ. Res. 23, 282–291.

    Article  PubMed  CAS  Google Scholar 

  33. Stephens, M.C.C., and Gerber, G.B. (1981) Toxicol. Lett. 7, 373–376.

    Article  PubMed  CAS  Google Scholar 

  34. Landa, C.A., Maccioni, H.J.F., Arce, A. and Caputto, R. (1977) Biochem. J. 168, 325–332.

    PubMed  CAS  Google Scholar 

  35. Critchley, D.R., and Vicker, M.G. (1977) in Dynamic Aspect of Cell Surface Organization (Post, G., and Nicolson, G.L., eds.) pp. 307–370. Elsevier North Holland Biomed. Press.

  36. Kozik, M.B., and Wygladalska, H. (1977) Folia Histochem. Cytochem. 15, 79–85.

    CAS  Google Scholar 

  37. Kozik, M.B., Sosinski, E., and Szczech, J. (1977) Folia Histochem. Cytochem. 15, 86–94.

    Google Scholar 

  38. Moore, M.N., and Stabbing, A.R.D. (1976) J. Mar. Biol. Assoc. U.K. 56, 995–1005.

    Article  CAS  Google Scholar 

  39. McLawhon, R.W., Schoon, G.S., and Dawson, G. (1981) J. Neurochem. 37, 132–139.

    Article  PubMed  CAS  Google Scholar 

  40. Nordberg, G.F. (1980) in Advances in Neurotoxicology (Manzo, L., Lery, N., Lacasse, Y., and Roche, J. eds.), pp. 3–15, Pergamon Press, London.

    Google Scholar 

  41. Berlin, M., Grant, C.A., Hellberg, J., Helstrom, J. and Schutz, A. (1975) Arch. Environ. Health 30, 340–348.

    PubMed  CAS  Google Scholar 

  42. Magos, L. (1980) in Advances in Neurotoxicology (Manzu, L., Lery, N., Lacasse, Y., and Roche, L., eds.) pp. 17–25, Pergamon Press, London.

    Google Scholar 

  43. Svennerholm, L. (1963) J. Neurochem. 10, 613–617.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rebel, G., Guerin, P. & Prasad, K.N. Effect of methylmercuric chloride on gangliosides of mouse neuroblastoma cells in culture. Lipids 18, 664–667 (1983). https://doi.org/10.1007/BF02534680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534680

Keywords

Navigation