Skip to main content
Log in

Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis andClarias batrachus)

  • Published:
Lipids

Abstract

The fate of [1-14C] linoleic acid and [1-14C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish,Heteropneustes fossilis andClarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated14C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of liolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PUFA:

polyunsaturated fatty acid

EFA:

essential fatty acid

ECL:

equivalent chain length

TG:

trigly cerides

FFA:

free fatty acid

PL:

polar lipids

WE:

wax ester

TLC:

thin layer chromatography

References

  1. Holman, R.T. (1977) in Polyunsaturated Fatty Acids (Kunau, W.H., and Holman, R.T., eds.) pp. 163–182, Am. Oil Chem. Soc., Champaign, IL.

    Google Scholar 

  2. Rivers, J.P.W., Hassam, A.G., Crawford, M.A., and Brambell, M.R. (1976). FEBS Lett. 67, 269–270.

    Article  PubMed  CAS  Google Scholar 

  3. Sinclair, A.J., Mclean, J.G., and Monger, E.A. (1979) Lipids 14:932–936.

    Article  PubMed  CAS  Google Scholar 

  4. Owen, J.M., Adron, J.W., Middleton, C., and Cowey, C.B. (1975) Lipids 10, 528–531.

    Article  PubMed  CAS  Google Scholar 

  5. Kanazawa, A., Teshima, S.I., and Ono, K. (1979). Comp. Biochem. Physiol. 63B, 295–298.

    Article  CAS  Google Scholar 

  6. Bandyapadhyay, G.K., Dutta, J., and Ghosh, S., Ind. J. Biochem. Biophys., in press.

  7. Cohen, P.P. (1957) in Manometric Techniques (Umbreit, W.W., Burris, R.H., and Stanffer, J.F., eds.) pp. 147–150, Burgess Publishing Co., Minneapolis, MN.

    Google Scholar 

  8. Bligh, E.G., and Dyer, W.J. (1959) Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  9. Kates, M. (1972) in Laboratory Techniques in Biochemistry and Molecular Biology (Work, T.S., and Work, E., eds.) Vol. 3, pp. 278–600, Elsevier Publishers, Amsterdam.

    Google Scholar 

  10. Chalverdjian, A. (1964) Biochem. J. 90, 518–521.

    Google Scholar 

  11. Morrison, W.K., and Smith, L.M. (1964) J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  12. Bazan, N.G. (1970). Biochim. biophys. Acta 218, 1–10.

    PubMed  CAS  Google Scholar 

  13. Bandyopadhyay, G.K., and Dutta, J. (1975) J. Chromatogr. 114, 280–282.

    Article  Google Scholar 

  14. Dudley, P.A., and Anderson, R.E. (1975) Lipids 10, 113–115.

    Article  PubMed  CAS  Google Scholar 

  15. Ackman, R.G. (1963) J. Am. Oil Chem. Soc. 40, 558–564.

    Google Scholar 

  16. Goldfine, H., and Bloch, K. (1961). J. Biol. Chem. 236, 2596–2601.

    PubMed  CAS  Google Scholar 

  17. Brady, R.O., Bradley, R.M., and Trans, E.G. (1960) J. Biol. Chem. 235, 3093–3103.

    CAS  Google Scholar 

  18. Murray, M.W., Andrews, J.W., and DeLoaeh, H.L. (1977). J. Nutr. 107, 272–280.

    PubMed  CAS  Google Scholar 

  19. Worthington, R.E., Boggess, T.S., Jr. and Heaton, E.K. (1972) J. Fish. Res. Board Can. 29, 113–115.

    CAS  Google Scholar 

  20. Sen, P.C., Ghosh, A., and Dutta, J. (1976) J. Sci. Food Agric. 27, 811–818.

    Article  PubMed  CAS  Google Scholar 

  21. Sen, P.C., Ghosh, A., and Dutta, J. (1976) J. Indian Chem. Soc. LIII, 920–922.

    Google Scholar 

  22. Das, A.K. (1980) Ph.D. Thesis, University of Calcutta, India, pp. 81–83.

  23. Kazuo, Y., Kobayashi, K., and Yone, Y. (1980) Bull. Jpn. Soc. Sci. Fish. 46, 1231–1234.

    Google Scholar 

  24. Murata, H., and Higashi, T. (1980) Bull. Jpn. Soc. Sci. Fish. 46, 1333–1338.

    CAS  Google Scholar 

  25. Sudan, M.C., Ball, A.J., Ilic, V., and Williamson, D.H. (1980). FEBS Lett. 116, 37–40.

    Article  Google Scholar 

  26. Sudan, M.C. Tordoff, A.F.C., Ilic, V., and Williamson, D.H. (1980):FEBS Lett. 120, 80–84.

    Article  Google Scholar 

  27. Lund, H., Borreback, B., and Bremer, J. (1980) Biochim. Biophys. Acta 620, 364–371.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bandyopadhyay, G.K., Dutta, J. & Ghosh, S. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis andClarias batrachus). Lipids 17, 733–740 (1982). https://doi.org/10.1007/BF02534660

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534660

Keywords

Navigation