Skip to main content
Log in

Nonspecific lipid transfer proteins as probes of membrane structure and function

  • Published:
Lipids

Abstract

A protein that accelerates transfer of phospholipids of varying head group and fatty acid composition has been purified from bovine liver. As previously found for other phospholipid transfer proteins, “nonspecific lipid transfer protein” stimulates a kinetically biphasic transfer of radioactively labeled phospholipid from small unilamellar vesicles to unlabeled multilamellar vesicles. The kinetics are consistent with rapid transfer of phospholipid from the outer monalyer and slow transfer of that localized in the inner monolayer (half-times greater than 3 days for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol). Protein catalyzed transfer is inhibited by high ionic strength and has an activation energy of 35 kJ/mol. The broad lipid specificity and ease of large-scale purification make these proteins candidates for membrane phospholipid compositional modification. The compositions of rat liver mitochondrial and microsomal membranes and Morris hepatoma 7288c mitochondrial membranes were altered by incubation with lipid vesicles and nonspecific lipid transfer protein. Incubation with phosphatidylcholine vesicles led to increased levels of phosphatidylcholine and decreased levels of other transferrable lipids (phosphatidylethanolamine, phosphatidylinositol, and cholesterol) unless the latter were included in the vesicles. When vesicles containing dipalmitoylphosphatidylcholine were incubated with microsomal membranes, a large increase in disaturated phosphatidylcholine was also observed. These changes in composition were correlated with activities of membrane enzymes. It appears that microsomal glucose-6-phosphatase is inhibited by increased phosphatidylcholine saturation. Moreover, this enzyme is also inhibited by decreases in the phosphatidylethanolamine/phosphatidylcholine ratio whereas NADPH cytochrome c reductase is not. Likewise, decreased cholesterol to phospholipid ratios did not greatly affect the abnormally low levels of hepatoma succinate cytochrome c reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PdtCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdIns:

phosphatidylinositol

SphMye:

sphingomyelin

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonate

NS-TP:

nonspecific lipid transfer protein

diPtdGro:

diphosphatidylglycerol

diPal:

dipalmitoyl

References

  1. Roseman, M.A., and Thompson, T.E. (1980) Biochemistry 19, 439–444.

    Article  PubMed  CAS  Google Scholar 

  2. Papahadjopoulos, D., Hui, S., Vail, W.J., and Poste, G. (1976) Biochim. Biophys. Acta 448, 245–264.

    Article  CAS  Google Scholar 

  3. Zilversmit, D.B., and Hughes, M.E. (1976) Methods Membr. Biol. 7, 211–259.

    CAS  Google Scholar 

  4. Douady, D., Grosbois, M., Guerbette, F., and Kader, J.-C. (1982) Biochim. Biophys. Acta 710, 143–153.

    CAS  Google Scholar 

  5. Kamp, H.H., Wirtz, K.W.A., and Van Deenen, L.L.M. (1973) Biochim. Biophys. Acta 318, 313–325.

    Article  CAS  Google Scholar 

  6. Helmkamp, G.M., Jr., Harvey, M.S., Wirtz, K.W.A., and Van Deenen, L.L.M. (1974) J. Biol. Chem. 249, 6382–6389.

    PubMed  CAS  Google Scholar 

  7. Bloj, B., and Zilversmit, D.B. (1977) J. Biol. Chem. 252, 1613–1619.

    PubMed  CAS  Google Scholar 

  8. DiCorleto, P.E., Warach, J.B., and Zilversmit, D.B. (1979) J. Biol. Chem. 254, 7795–7802.

    PubMed  CAS  Google Scholar 

  9. Crain, R.C., and Zilversmit, D.B. (1980) Biochemistry 19, 1433–1439.

    Article  PubMed  CAS  Google Scholar 

  10. McMurray, W.C., and Dawson, R.M.C. (1969) Biochem. J. 112, 91–108.

    PubMed  CAS  Google Scholar 

  11. Lee, T.C., Stephens, N., Moehl, A., and Synder, F. (1973) Biochim. Biophys. Acta 291, 86–92.

    Article  PubMed  CAS  Google Scholar 

  12. Ada, G.L. (1949) Biochem. J. 45, 422–428.

    PubMed  CAS  Google Scholar 

  13. Gurr, M.I., Prottey, C., and Hawthorne, J.N. (1965) Biochim. Biophys. Acta 106, 357–370.

    PubMed  CAS  Google Scholar 

  14. Brophy, P.J., and Aitken, J.W. (1979) J. Neurochem. 33, 355–356.

    Article  PubMed  CAS  Google Scholar 

  15. Engle, M.J., Van Golde, L.M.G., and Wirtz, K.W.A. (1978) FEBS Lett. 86, 277–281.

    Article  PubMed  CAS  Google Scholar 

  16. Bergelson, L.D., Dyatlovitskaya, E.V., Sorokina, I.B., and Gorkova, N.P. (1974) Biochim. Biophys. Acta 360, 361–365.

    PubMed  CAS  Google Scholar 

  17. Bloj, B., and Zilversmit, D.B. (1981) Mol. Cell. Biochem. 40, 163–172.

    Article  PubMed  CAS  Google Scholar 

  18. DiCorleto, P.E., and Zilversmit, D.B. (1979) Biochim. Biophys. Acta 552, 114–119.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, L.W., Hughes, M.E., and Zilversmit, D.B. (1975) Biochim. Biophys. Acta 375, 176–185.

    Article  PubMed  CAS  Google Scholar 

  20. Rothman, J.E., and Dawidowicz, E.A. (1975) Biochemistry 14, 2809–2816.

    Article  PubMed  CAS  Google Scholar 

  21. Bloj, B., and Zilversmit, D.B. (1976) Biochemistry 15, 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  22. Crain, R.C., and Zilversmit, D.B. (1980) Biochemistry 19, 1440–1447.

    Article  PubMed  CAS  Google Scholar 

  23. Muczynski, K.A., Harris, W.E., and Stahl, W.L. (1981) Int. J. Biochem. 13, 959–962.

    Article  PubMed  CAS  Google Scholar 

  24. Crain, R.C., and Zilversmit, D.B. (1981) Biochemistry 20, 5320–5326.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson, L.W., and Zilversmit, D.B. (1975) Biochim. Biophys. Acta 375, 176–185.

    Article  PubMed  CAS  Google Scholar 

  26. Dicorleto, P.E., and Zilversmit, D.B. (1977) Biochemistry 16, 2145–2150.

    Article  PubMed  CAS  Google Scholar 

  27. Crain, R.C., and Zilversmit, D.B. (1980) Biochim. Biophys. Acta 620, 37–48.

    PubMed  CAS  Google Scholar 

  28. Phillips, A.H., and Langdon, R.G. (1962) J. Biol. Chem. 237, 2652–2660.

    PubMed  CAS  Google Scholar 

  29. Kamp, H.H., and Wirtz, K.W.A. (1974) in Methods in Enzymology (Fleischer, S., and Packer, L., eds.) Vol. XXXII, part B, pp. 140–146, Academic Press, New York, NY.

    Google Scholar 

  30. Demel, R.A., Kalsbeek, R., Wirtz, K.W.A., and Van Deenen, L.L.M. (1977) Biochim. Biophys. Acta 466, 10–22.

    Article  PubMed  CAS  Google Scholar 

  31. Dyatlovitskaya, E.V., Timofeeva, N.G., and Bergelson, L.D. (1978) Eur. J. Biochem. 82, 463–471.

    Article  PubMed  CAS  Google Scholar 

  32. Noland, B.J., Arebalo, R.E., Hansbury, E., and Scallen, T.J. (1980) J. Biol. Chem. 255, 4282–4289.

    PubMed  CAS  Google Scholar 

  33. Helmkamp, G.M., Jr. (1982) Biophys. J. 37, 112–113.

    CAS  Google Scholar 

  34. Zilversmit, D.B., and Hughes, M.E. (1977) Biochim. Biophys. Acta 469, 99–110.

    Article  PubMed  CAS  Google Scholar 

  35. Crain, R.C., Marinetti, G.V., and O'Brien, D.F. (1978) Biochemistry 17, 4186–4192.

    Article  PubMed  CAS  Google Scholar 

  36. Brophy, P.J., Burbach, P., Nelemans, S.A., and Westerman, J., Wirtz, K.W.A., and Van Deenen, L.L.M. (1978) Biochem. J. 174, 413–420.

    PubMed  CAS  Google Scholar 

  37. Van den Besselaar, A.M.H.P., de Kruijff, B., Van de Bosch, H., and Van Deenen, L.L.M. (1978) Biochim. Biophys. Acta 510, 242–255.

    Article  PubMed  Google Scholar 

  38. DiCorleto, P.D. (1978) Ph.D. thesis, Cornell University, Ithaca, NY.

  39. Helmkamp, G.M., Jr. (1980) Biochem. Biophys. Res. Commun. 97, 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  40. Wirtz, K.W.A., Devaux, P.F., and Bienvenue, A. (1980) Biochemistry 19, 3395–3399.

    Article  PubMed  CAS  Google Scholar 

  41. Kaschnitz, R.M., Hatefi, Y., Pedersen, P.L., and Morris, H.P. (1979) in Methods in Enzymology (Fleischer, S., and Packer, L., eds.) Vol. 5, pp. 79–88, Academic Press, New York, NY.

    Google Scholar 

  42. Schnaitman, C., and Greenawalt, J.W. (1968) J. Cell Biol. 38, 158–175.

    Article  PubMed  CAS  Google Scholar 

  43. Sottocasa, G.L., Kuylenstierna, B., Ernster, L., and Bergstrand, A. (1967) J. Cell Biol. 32, 415–438.

    Article  PubMed  CAS  Google Scholar 

  44. Coleman, P.S., Lavietes, B.B., Born, R., and Weg, A. (1978) Biochem. Biophys. Res. Commun. 84, 202–207.

    Article  PubMed  CAS  Google Scholar 

  45. Coleman, P.S., and Lavietes, B.B. (1981) CRC Critical Rev. Biochem. 11, 341–383.

    CAS  Google Scholar 

  46. Wallach, D.F.H. (1975) Membrane Molecular Biology of Neoplastic Cells, Elsevier Scientific Publishing Company, New York, NY.

    Google Scholar 

  47. Coleman, R. (1973) Biochim. Biophys. Acta 300, 1–30.

    PubMed  CAS  Google Scholar 

  48. Foucans, B., and Jain, M.K. (1974) Adv. Lipid Res. 12, 147–226.

    Google Scholar 

  49. Sandermann, H., Jr. (1978) Biochim. Biophys. Acta 545, 209–237.

    Google Scholar 

  50. Fleischer, S., Brierley, G., Klouwen, H., and Slautterback, D.B. (1962) J. Biol. Chem. 237, 3264–3272.

    PubMed  CAS  Google Scholar 

  51. Martonosi, A., Donley, J., and Halpin, R.A. (1968) J. Biol. Chem. 243, 61–70.

    PubMed  CAS  Google Scholar 

  52. Racker, E. (1979) in Methods in Enzymology (Fleischer, S., and Packer, L., eds.) Vol. LV, part F, pp. 699–711, Academic Press, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Crain, R.C. Nonspecific lipid transfer proteins as probes of membrane structure and function. Lipids 17, 935–943 (1982). https://doi.org/10.1007/BF02534589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534589

Keywords

Navigation