Skip to main content
Log in

Effects of a (n−3) polyunsaturated fatty acid-deficient diet on profiles of serum vitellogenin and lipoprotein in vitellogenic trout (Salmo gairdneri)

  • Published:
Lipids

Abstract

During the 6 months of vitellogenesis, 3-year-old female trout (Salmo gairdneri) were fed either an enriched (E) or an (n−3) polyunsaturated fatty acid (PUFA)-deficient (D) diet; serum vitellogenin (VG) and lipoproteins (d<1.21 g/ml) were analyzed at the third month of vitellogenesis (September) and at ovulation (December). The serum content of high density lipoproteins (HDL), the major protein class, maintained a mean value of 1500 mg/dl at both stages and with both diets. On the contrary, very low density lipoproteins (VLDL) were 90% higher during vitellogenesis than at spawning time, whereas excess vitellogenin circulated at this period (6580 mg/dl serum with diet E). The diet deficient in (n−3) lowered serum vitellogenin content by 16% in September and by 26% in December. The degree of (n−3) PUFA incorporation moderately decreased in low density lipoproteins (LDL) and in HDL with the (n−3)-deficient diet. The effect was more pronounced for 20∶5. On the other hand, essential 22∶6 was incorporated into vitellogenin at the same rate in September as in December with diet E (23% and 25%, respectively), whereas after a 3-month deficiency, the percentage fell to 12%; this percentage rose again to 19% at spawning time. These findings show that, although stored (n−3) PUFA were not exhausted after a 6-month dietary deficiency, the incorporation of essential fatty acids (EFA) into vitellogenin during the early stages of oogenesis was low, suggesting changes in egg composition that may influence hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, C.M. (1978) Ann. Biol. Anim. Bioch. Biophys. 18, 1013–1018.

    CAS  Google Scholar 

  2. Lambert, J.G.D., Bosman, G.I.C.G.M., van den Hurk, R., and van Oordt, P.G.W.J. (1978) Ann. Biol. Anim. Bioch. Biophys. 18, 923–927.

    CAS  Google Scholar 

  3. Léger, C., Frémont, L., Marion, D., Nassour, I., and Desfarges, M.F. (1981) Lipids 16, 593–600.

    Google Scholar 

  4. Fulco, A., and Mead, J. (1959) J. Biol. Chem. 234, 1411–1416.

    PubMed  CAS  Google Scholar 

  5. Léger, C. (1978) Oceanis 4, 367–393.

    Google Scholar 

  6. Frémont, L., Léger, C., and Boudon, M. (1981) Comp. Biochem. Physiol. 69B, 107–113.

    Google Scholar 

  7. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955) J. Clin. Invest. 34, 1345–1353.

    PubMed  CAS  Google Scholar 

  8. Frémont, L., and Marion, D. (1982) Comp. Biochem. Physiol. 73B, 849–855.

    Google Scholar 

  9. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  10. Bartlett, G.R. (1959) J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  11. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  12. Flanzy, J., Boudon, M., Léger, C., and Pihet, J. (1976) J. Chromat. Sci. 14, 17–24.

    CAS  Google Scholar 

  13. Wittliff, J.L., and Kenny, F.J. (1972) Biochim. Biophys. Acta 269, 485–492.

    PubMed  CAS  Google Scholar 

  14. Chan, L., Jackson, R.L., O’Malley, B.W., and Means, A.R. (1976) J. Clin. Invest. 58, 368–379.

    Article  PubMed  CAS  Google Scholar 

  15. Williams, D.L. (1979) Biochemistry 18, 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  16. Whitehead, C., Bromage, N.R., Forster, J.R.M. and Matty, A.J. (1978) Ann. Biol. Anim. Bioch. Biophys. 18, 1035–1043.

    CAS  Google Scholar 

  17. Whitehead, C., Bromage, N.R., Breton, B. (1983) Aquaculture 34, 317–326.

    Article  CAS  Google Scholar 

  18. van Bohemen, C., Lambert, J.G.D., and Peute, J. (1981) Gen. Comp. Endocrinol. 44, 94–107.

    Article  PubMed  Google Scholar 

  19. Holdsworth, G., Michell, R.H., and Finean, J.B. (1974) FEBS Letters 39, 275–277.

    Article  PubMed  CAS  Google Scholar 

  20. Evans, A.J., Perry, M.M., and Gilbert, A.B. (1979) Biochim. Biophys. Acta 573, 184–195.

    PubMed  CAS  Google Scholar 

  21. Wiegand, M.D., and Idler, R. (1982) Can. J. Zool. 60, 2683–2693.

    Article  Google Scholar 

  22. Craik, J.C.A. (1978) Comp. Biochem. Physiol. 60B, 9–18.

    CAS  Google Scholar 

  23. Hori, S.H., Kodama, T., and Tanahashi, K. (1979) Gen. Comp. Endocrin. 37, 306–320.

    Article  CAS  Google Scholar 

  24. Takeuchi, T., and Watanabe, T. (1976) Bull. Japan. Soc. Scient. Fish 42, 907–919.

    Google Scholar 

  25. Watanabe, T. (1982) Comp. Biochem. Physiol. 73B, 3–15.

    CAS  Google Scholar 

  26. Menon, N.K., and Dhopeshwarkar, G.A. (1982) in Progress in Lipid Research (Holman, R.T., ed.) Vol. 21, pp. 309–326, Pergamon Press Ltd., Oxford, U.K.

    Google Scholar 

  27. German, B., Bruckner, G., and Kinsella, J. (1983) Prostaglandins 26, 207–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Frémont, L., Léger, C., Petridou, B. et al. Effects of a (n−3) polyunsaturated fatty acid-deficient diet on profiles of serum vitellogenin and lipoprotein in vitellogenic trout (Salmo gairdneri). Lipids 19, 522–528 (1984). https://doi.org/10.1007/BF02534485

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534485

Keywords

Navigation