Skip to main content
Log in

Hypolipidemic activity of the surfactants aminimides, and their effects on lipid metabolism of rodents

  • Published:
Lipids

Abstract

A series of short chain fatty acid derivatives of aminimides were shown to possess hypolipidemic activity in rats and mice. Most of the agents tested lowered both serum cholesterol and triglyceride levels by at least 30% in mice and were effective in hyperlipidemic induced mice. 1,1-Dimethyl-1-(2-hydroxypropyl)-amine mersitimide lowered serum cholesterol levels 41% and serum triglyceride levels 56% at 20 mg/kg/day I.P. after 16 days. The same agent was active orally when administered to rats with a 38% reduction in serum cholesterol and a 52% reduction in serum triglycerides after 14 days. The agents inhibited liver acetyl CoA synthetase, ATP dependent citrate lyase and phosphatidate phosphohydrolase activities in vitro and in vivo. Reduction of cholesterol, triglycerides, neutral lipids and phospholipid levels were noted in the livers of mice treated for 16 days. In rat studies, cholesterol, triglyceride and phospholipid levels were reduced in liver, small intestine and the feces after two weeks' dosing. The cholesterol content was reduced in the very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions but elevated in the high density lipoproteins (HDL). Triglyceride levels were lowered in the VLDL, and neutral lipid levels were reduced in the chylomicron and VLDL fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, I.H., Chapman, J.M. Jr., and Cocolas, G.H. (1981) J. Pharm. Sci. 70, 326–328.

    Article  PubMed  CAS  Google Scholar 

  2. Chapman, J.M. Jr., Cocolas, G.H., and Hall, I.H. (1979) J. Med. Chem. 22, 1399–1402.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman, J.M. Jr., Voorstad, P.J., Cocolas, G.H., and Hall, I.H. (1983) J. Med. Chem. 26, 237–243.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, I.H., Voorstad, P.J., Chapman, J.M. Jr., and Cocolas, G.H. (1983) J. Pharm. Sci. 72, 845–851.

    Article  PubMed  CAS  Google Scholar 

  5. Voorstad, P.J., Cocolas, G.H., and Hall, I.H. (1984) Pharm. Res. 6, 250–255.

    Article  Google Scholar 

  6. Voorstad, P.J., Chapman, J.M. Jr., Cocolas, G.H., Wyrick, S.D., and Hall, I.H. (1985) J. Med. Chem. 28, 9–12.

    Article  PubMed  CAS  Google Scholar 

  7. Kabara, J.J., McKillip, W.J., and Sedor, E.A. (1975) J. Am. Oil Chem. Soc. 52, 316–317.

    PubMed  CAS  Google Scholar 

  8. Kabara, J.J., and Haitsma, G.V. (1975) J. Am. Oil Chem. Soc. 52, 444–447.

    PubMed  CAS  Google Scholar 

  9. Kabara, J.J. (1977) J. Am. Oil Chem. Soc. 54, 202–206.

    PubMed  CAS  Google Scholar 

  10. Ness, A.T., Pastewka, J.V., and Peacock, A.C. (1964) Clin. Chim. Acta 10, 229–237.

    Article  PubMed  CAS  Google Scholar 

  11. Goodridge, A.G. (1973) J. Biol. Chem. 248, 4318–4327.

    PubMed  CAS  Google Scholar 

  12. Hoffman, M., Weiss, L., and Wieland, O.H. (1978) Analyt. Biochem. 84, 441–448.

    Article  Google Scholar 

  13. Robinson, B.H., Williams, G.R., Halperin, M.L., and Leznoff, C.C. (1970) Eur. J. Biochem. 15, 263–272.

    Article  PubMed  CAS  Google Scholar 

  14. Robinson, B.H., and Williams, G.R. (1970) Biochim. Biophys. Acta 216, 63–70.

    Article  PubMed  CAS  Google Scholar 

  15. Kritchevsky, D., and Tepper, S.A. (1973) Atherosclerosis 18, 93–99.

    Article  PubMed  CAS  Google Scholar 

  16. Haven, G.T., Krzemien, J.R., and Nguyen, T.T. (1973) Res. Commun. Chem. Pathol. Pharmacol. 6, 253–261.

    PubMed  CAS  Google Scholar 

  17. Wada, F., Hirata, K., and Sakameto, Y. (1969) J. Biochem. (Tokyo) 65, 171–175.

    CAS  Google Scholar 

  18. Greenspan, M.D., and Lowenstein, J.M. (1968) J. Biol. Chem. 243, 6273–6280.

    PubMed  CAS  Google Scholar 

  19. Brady, R.O., Bradley, R.M., and Trams, E.G. (1960) J. Biol. Chem. 235, 3093–3098.

    CAS  Google Scholar 

  20. Lamb, R.G., Wyrick, S.D., and Piantadosi, C. (1977) Atherosclerosis 27, 147–154.

    Article  PubMed  CAS  Google Scholar 

  21. Mavis, R.D., Finkelstein, J.N., and Hall, B.P. (1978) J. Lipid Res. 19, 467–477.

    PubMed  CAS  Google Scholar 

  22. Folch, J., Lees, M., and Stanley, G.H.C. (1957) J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  23. Bligh, E.G., and Dyer, W.J. (1957) Can. J. Biochem. Physiol. 37, 911–917.

    Google Scholar 

  24. Bragdon, J.H. (1951) J. Biol. Chem. 190, 513–517.

    PubMed  CAS  Google Scholar 

  25. Stewart, C.P., and Henday, E.B. (1985) Biochem. J. 29, 1683–1689.

    Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  27. Hatch, F.T., and Lees, R.S. (1960) Adv. Lipid Res. 6, 1–68.

    Google Scholar 

  28. Havel, R.J., Eden, H.A., and Bragdon, J.H. (1955) J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  29. Thorp, J.M., and Waring, W.S. (1962) Nature (London) 194, 948–949.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hall, I.H., Kabara, J.J. & Matthews, T.G. Hypolipidemic activity of the surfactants aminimides, and their effects on lipid metabolism of rodents. Lipids 20, 685–692 (1985). https://doi.org/10.1007/BF02534388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534388

Keywords

Navigation