Skip to main content
Log in

Evidence for facilitated transport in the absorption of sterols bySaccharomyces cerevisiae

  • Papers from the H. W. Kircher Memorial Symposium on Chemistry Biosynthesis and Function of Sterols Presented at the 76th AOCS Annual Meeting in Philadelphia, Pennsylvania, May 1985
  • Published:
Lipids

Abstract

Saccharomyces cerevisiae is known to absorb sterols readily in the absence of air. As shown in this paper yeast cells also will absorb sterols with and without various double bonds or an alkyl group at C-24 in the presence of air at a concentration (ca. 10% of the gas phase) which is growth-limiting due to limited sterol synthesis. However, if the growth conditions are changed to be fully aerobic, sterol is no longer absorbed to any significant extent even when the sterol in the medium (ergosterol) is the same as that present in the cells. This implies that sterol in the medium does not equilibrate passively with sterol in the plasma membrane and that some sort of facilitated transport, which can be turned on and off, is responsible for the entry of sterol when it occurs as a response to an inadequate endogenous supply of sterol. In agreement with facilitated transport mediated by protein binding, yeast cells in an auxotrophic state for sterol exhibit a high degree of stereoselectivity with respect to the orientation of the side chain around the C-17(20)-bond. For instance, E-17(20)- but not Z-17(20)-dehydrocholesterol is absorbed by cells undergoing limited growth with 10% air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreasen, A.A., and Stier, T.J.B. (1953)J. Cell. Comp. Physiol. 41, 23–35.

    Article  CAS  Google Scholar 

  2. Hossack, J.A., and Rose, A.H. (1976)J. Bacteriol. 127, 67–75.

    PubMed  CAS  Google Scholar 

  3. Nes, W.R., Adler, J.H., Sekula, B.C., and Krevitz, K. (1976)Biochem. Biophys. Res. Commun. 71, 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  4. Pinto, W.J., and Nes, W.R. (1983)J. Biol. Chem. 258, 4472–4476.

    PubMed  CAS  Google Scholar 

  5. Nes, W.R., Joseph, J.M., and Adler, J.H. (1981)Fed. Proc. 40, 1561.

    Google Scholar 

  6. Taylor, F.R., and Parks, L.W. (1981)J. Biol. Chem. 256, 13048–13054.

    PubMed  CAS  Google Scholar 

  7. Ramgopal, M., and Bloch, K. (1983)Proc. Nat. Acad. Sci. USA 80, 712–715.

    Article  PubMed  CAS  Google Scholar 

  8. Salerno, L.F., and Parks, L.W. (1983)Biochim. Biophys. Acta 752, 240–243.

    CAS  Google Scholar 

  9. Buttke, T.M., Reynolds, R., and Pyle, A.L. (1982)Lipids 17, 361–366.

    PubMed  CAS  Google Scholar 

  10. Buttke, T.M., Jones, S.D., and Bloch, K. (1980)J. Bacteriol. 144, 124–130.

    PubMed  CAS  Google Scholar 

  11. Nes, W.R., Sekula, B.C., Nes, W.D., and Adler, J.H. (1978)J. Biol. Chem. 253, 6218–6225.

    PubMed  CAS  Google Scholar 

  12. Pinto, W.J., Lozano, R., Sekula, B.C., and Nes W.R. (1983)Biochem. Biophys. Res. Commun. 112, 47–54.

    Article  PubMed  CAS  Google Scholar 

  13. Corey, E.J., Ortiz de Montellano, P.R., Lin, K., and Dean, P.D.G. (1967)J. Am. Chem. Soc. 89, 2797–2798.

    Article  PubMed  CAS  Google Scholar 

  14. Avruch, L., and Oehlschlager, A.C. (1973)Synthesis 10, 622–623.

    Article  Google Scholar 

  15. Nes, W.R., Kostic, R.B., and Mosettig, E. (1956)J. Am. Chem. Soc. 78, 436–440.

    Article  CAS  Google Scholar 

  16. Nes, W.R., Varkey, T.E., Crump, D.R., and Gut, M. (1976)J. Org. Chem. 41, 3429–3433.

    Article  PubMed  CAS  Google Scholar 

  17. Joseph, J.M. (1980) Ph.D. Thesis, Drexel University, Philadelphia, PA.

  18. Nes, W.R., Krevitz, K., Joseph, J.M., Nes W.D., Harris, B., Gibbons, G.F., and Patterson, G.W. (1977)Lipids 12, 511–527.

    CAS  Google Scholar 

  19. Pinto, W.J., Lozano, R., and Nes, W.R. (1985)Biochim. Biophys. Acta 836, 89–95.

    PubMed  CAS  Google Scholar 

  20. Smith, P.F. (1971)The Biology of Mycoplasmas, Academic Press, New York.

    Google Scholar 

  21. Smith, P.F. (1968)Adv. Lipid Res. 6, 69–105.

    PubMed  CAS  Google Scholar 

  22. Dempsey, M.E. (1984)Curr. Top. Cell. Regul. 24, 63–86.

    PubMed  CAS  Google Scholar 

  23. Nes, W.D., Wong, R.Y., Benson, M., Landrey, J.R., and Nes, W.R. (1984)Proc. Nat. Acad. Sci. USA 81, 5896–5900.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Nes, W.R., Dhanuka, I.C. & Pinto, W.J. Evidence for facilitated transport in the absorption of sterols bySaccharomyces cerevisiae . Lipids 21, 102–106 (1986). https://doi.org/10.1007/BF02534311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534311

Keywords

Navigation