Skip to main content
Log in

Fatty acid metabolism and cell proliferation. VII. Antioxidant effects of tocopherols and their quinones

  • Published:
Lipids

Abstract

The antioxidant capacities of α- and γ-tocopherols (α-E and γ-E) and their quinones (α-EQ and γ-EQ) were determined in non-biological and biological systems. The non-biological system consisted of arachidonic acid [20∶4 (n−6)], the oxidant cumene hydroperoxide, and a Fe3+ catalyst to facilitate malondialdehyde (MDA) formation from lipid peroxides. α-E and γ-E had similar antioxidant capacities in this system. α-EQ also functioned as an antioxidant, while γ-EQ exhibited a crossover effect by functioning as an antioxidant at low concentrations and a prooxidant at high concentrations. Biological lipid peroxidation in smooth muscle cells challenged with 20∶4 (n−6) was measured both by MDA formation in confluent cultures and by cell growth in proliferating cultures. α-E, γ-E and α-EQ had similar antioxidant capacities, but γ-EQ was highly cytotoxic for cells in both confluent and proliferating cultures. Cellular retention of antioxidants was estimated indirectly from MDA formation when cells were loaded with an antioxidant (preincubation) and then incubated for varying periods of time in fresh media containing 20∶4 (n−6). Cellular retention also was measured directly with tritiated α-E and tritiated αEQ. These studies showed that cellular retention decreased in the sequence γ-E>α-E>α-EQ. Thus, cellular retention does not explain the enhanced antioxidant capacity of α-E compared to γ-E that has been reported for animal systems. The antioxidant capacity of αE evidently is enhanced by its metabolism to a quinone which, unlike the quinone from γ-E, functions as a biological antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chipault, J.R. (1962) In: Autoxidation and Antioxidants, Vol. II, (Lundberg, W.O., ed.), pp. 477–452, John Wiley and Sons, Inc., N.Y.

    Google Scholar 

  2. Aaes-Jørgensen, E. (1962) In: Autoxidation and Antioxidants, Vol. II, (Lundberg, W.O., ed.), pp. 1045–1094, John Wiley and Sons, Inc., N.Y.

    Google Scholar 

  3. Burton, G.W., and Ingold, K.U. (1981) J. Am. Chem. Soc. 103,. 6472–6477.

    Article  CAS  Google Scholar 

  4. Kasparek, S. (1980) In: Vitamin E, A Comprehensive Treatise, (Machlin, L.J., ed.), pp. 7–65, Marcel Dekker, Inc., N.Y. and Basel.

    Google Scholar 

  5. Dillard, C.J., Gavino, V.C., and Tappel, A.L. (1983) J. Nutr. 113, 2266–2273.

    PubMed  CAS  Google Scholar 

  6. Gloor, U., Wursch, J.., Schwieter, U., and Wiss, O. (1966) Hel. Chim. Acta 49, 2303–2312.

    Article  CAS  Google Scholar 

  7. Gallo-Torres, H.E. (1980) In: Vitamin E, A Comprehensive Treatise, (Machlin, L.J., ed.), pp. 170–267, Marcel Dekker, Inc., N.Y. and Basel.

    Google Scholar 

  8. Peake, I.R., and Bieri, J.G. (1971) J. Nutr. 101, 1615–1622.

    PubMed  CAS  Google Scholar 

  9. Peake, I.R., Windmueller, H.G., and Bieri, J.G. (1972) Biochim. Biophys. Acta 260, 679–688.

    PubMed  CAS  Google Scholar 

  10. Green, J., Edwin, E.E., Bunyan, J., and Diplock, A.T. (1960) Biochem. J. 75, 456–460.

    PubMed  CAS  Google Scholar 

  11. Krishnamurthy, S., and Bieri, J.G. (1963) J. Lipid Res. 4, 330–336.

    PubMed  CAS  Google Scholar 

  12. Mellors, A., and Barnes, M.M. (1966) Brit. J. Nutr. 20, 69–77.

    Article  PubMed  CAS  Google Scholar 

  13. Draper, H.H., and Csallany, A.S. (1969) Fed. Proc. 28, 3690–1695.

    Google Scholar 

  14. Gavino, V.C., Miller, J.S., Ikharebha, S.O., Milo, G.E., and Cornwell, D.G. (1981) J. Lipid Res. 22, 763–769.

    PubMed  CAS  Google Scholar 

  15. Gavino, V.C., Milo, G.E., and Cornwell, D.G. (1982) Cell Tissue Kinet. 15, 225–231.

    PubMed  CAS  Google Scholar 

  16. Liepkalns, V.A., Icard-Leipkalns, C., and Cornwell, D.G. (1982) Cancer Lett. 15, 173–178.

    Article  PubMed  CAS  Google Scholar 

  17. Morisaki, N., Stitts, J.M., Bartels-Tomei, L., Milo, G.E., Panganamala, R.V., and Cornwell, D.G. (1982) Artery 11, 88–107.

    PubMed  CAS  Google Scholar 

  18. Morkisaki, N., Lindsey, J.A., Stitts, J.M., Zhang, H., and Cornwell, D.G. (1984) Lipids 19, 381–394.

    Google Scholar 

  19. Cornwell, D.G., and Morisaki, N. (1984) In: Free Radicals in Biology, Vol. VI, (Pryor, W.A., ed.), pp. 95–147, Academic Press, N.Y.

    Google Scholar 

  20. Mackenzie, J.B., Rosenkrantz, H., Ulick, S., and Milhorat, A.T. (1950) J. Biol. Chem. 183, 655–662.

    CAS  Google Scholar 

  21. Bunyan, J., McHale, D., and Green, J. (1963) Brit. J. Nutr. 17, 391–398.

    Article  PubMed  CAS  Google Scholar 

  22. Huttner, J.J., Gwebu, E.T., Panganamala, R.V., Milo, G.E., Cornwell, D.G., Sharma, H.M., and Geer, J.C. (1977) Science 197, 289–291.

    Article  PubMed  CAS  Google Scholar 

  23. Mayer, H., and Isler, O. (1971) In: Methods in Enzymology, Vol. XVIII, Part C, (McCormick, D.G., and Wright, L.D., eds.), p. 337, Academic Press, N.Y.

    Google Scholar 

  24. Huttner, J.J., Cornwell, D.G., and Milo, G.E. (1977) T.C.A. Manual 3, 633–639.

    Article  Google Scholar 

  25. Gavino, V.C., Miller, J.S., Dillman, J.M., Milo, G.E., and Cornwell, D.G. (1981) J. Lipid Res. 22, 57–62.

    PubMed  CAS  Google Scholar 

  26. Morisaki, N., Sprecher, H., Milo, G.E., and Cornwell, D.G. (1982) Lipids 17, 893–899.

    PubMed  CAS  Google Scholar 

  27. Cornwell, D.G., Lindsey, J.A., Zhang, H., and Morisaki, N. (1984) In: Icosanoids and Cancer (Thaler-Dao, H., Crastes de Paulet, A., and Paoletti, R., eds.), pp. 205–222, Raven Press, N.Y.

    Google Scholar 

  28. Panganamala, R.V., and Cornwell, D.G. (1982) Annals N.Y. Acad. Sci. 393, 376–390.

    CAS  Google Scholar 

  29. Miller, J.S., Gavino, V.C., Ackerman, G.A., Sharma, H.M., Milo, G.E., Geer, J.C., and Cornwell, D.G. (1980) Lab. Invest. 42, 495–506.

    PubMed  CAS  Google Scholar 

  30. Cornwell, D.G., Huttner, J.J., Milo, G.E., Panganamala, R.V., Sharma, H.M., and Geer, J.C. (1979) Lipids 14, 194–207.

    Article  PubMed  CAS  Google Scholar 

  31. Chiku, S., Hamamura, K., and Nakamura, T. (1984) J. Lipid Res. 25, 40–48.

    PubMed  CAS  Google Scholar 

  32. Sawyer, D.T., Richens, D.T., Nanni Jr., E.J., and Stallings, M.D. (1980) In: Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, Vol. 11A, (Bannister, J.V., and Hill, H.A.O., eds.), pp. 1–26, Elsevier/North Holland, N.Y.

    Google Scholar 

  33. Bors, W., Saran, M., and Czapski, G. (1980) In: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, Vol. 11B, (Bannister, W.H., and Bannister, J.V., eds.), pp. 1–31, Elsevier/North Holland, N.Y.

    Google Scholar 

  34. Ozawa, T., and Hanaki, A. (1983) Chem. Pharm. Bull. 31, 2535–2539.

    CAS  Google Scholar 

  35. Slater, T.F. (1969) In: Lysosomes in Biology and Pathology, Vol. 1, (Dingle, J.T., and Fell, H.B., eds.), pp. 482–483, American Elsevier Publishing Co., N.Y.

    Google Scholar 

  36. Slater, T.F. (1979) In: Oxygen Free Radicals and Tissue Damage, Ciba Found. Symp 65, (Fitzsimons, D.W., ed.), pp. 143–159, Excerpta Medica, Amsterdam.

    Google Scholar 

  37. Koskas, J.P., Cillard, J., and Cillard, P. (1984) J. Am. Oil Chem. Soc. 61, 1466–1469.

    CAS  Google Scholar 

  38. Gallo-Torres, H.E., Miller, O.N., Hamilton, J.G., and Tratnyek, C. (1971) Lipids 6, 318–325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lindsey, J.A., Zhang, H., Kaseki, H. et al. Fatty acid metabolism and cell proliferation. VII. Antioxidant effects of tocopherols and their quinones. Lipids 20, 151–157 (1985). https://doi.org/10.1007/BF02534247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534247

Keywords

Navigation