Skip to main content
Log in

Validity and reproducibility of electrical impedance tomography for measurement of calf blood flow in healthy subjects

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The Sheffield electrical impedance tomography; (EIT) system produces images of changes in the distribution of resistivity within tissue. The paper reports on the application of electrical impedance tomography in monitoring volume changes in the limb during venous occlusion. The aim of the study is to assess the feasibility, reproducibility and validity of calf blood flow measurements by EIT. In 14 healthy volunteers calf blood flow is compared, as determined in a calf segment by strain-gauge plethysmography (SGP), with the impedence changes measured by EIT during rest and post-ischaemic hyperaemia. The measurements are repeated to assess reproducibility. The reproducibility for the EIT, assessed from the repeated measurements and expressed as a reproducibility coefficient, is 0.88 during rest and 0.89 during hyperaemia. The reproducibility coefficient for SGP data is 0.83 at rest and 0.67 during hyperaemia. Flow measurements, assessed by means of two methods, correlate well at rest (r=0.89), but only moderately during hyperaemia (r=0.51). The correlation coefficient for the pooled flow measurements is 0.98. It is concluded that EIT is a valid and reliable method for assessing blood flow in the limb. Possible applications of EIT in localising fluid changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert, J. S., Coffman, J. D., Balodimos, M. C., Koncz, L., andSoeldner, J. S. (1972): ‘Capillary permeability and blood flow in skeletal muscle of patients with diabetes mellitus and genetic prediabetes’,N. Eng. J. Med.,286, pp. 454–460

    Article  Google Scholar 

  • Anderson, F. A., Durgin, W. W., andBrowell Wheeler, H. (1986): ‘Interpretation of venous occlusion plethysmography using a nonlinear model’,Med. Biol. Eng. Comput.,24, pp. 379–385

    Article  Google Scholar 

  • Baisch, F., Gauger, J., andHeer M. (1991): ‘Classification of the free fluid reservoir in the calf by electrical impedance tomography’,Physiologist,34, 1 suppl, pp. 181–182

    Google Scholar 

  • Bland, J. M., andAltman, D. G. (1986): ‘Statistical methods for assessing agreement between two methods of clinical measurement’,Lancet,8, pp. 307–310

    Google Scholar 

  • Brown, B. H., Leathard, A. D. Sinton, A. M., Mcardle, F. J., Smith, R. W. M., andBarber D. C. (1992): ‘Blood flow imaging using electrical impedance tomography’,Clin. Phys. Physiol. Meas.,13 A, pp. 175–179

    Google Scholar 

  • Brown, B. H., andSeagar A. D. (1987): ‘The Sheffield data collection system’,ibid.,,8 A, 91–97

    Article  Google Scholar 

  • Guyton, A. C. (1991): ‘Textbook of medical physiology’, (W.B. Saunders Co, Philadelphia) pp. 170–183

    Google Scholar 

  • Hillestad, L. J. (1963): ‘The peripheral blood flow intermittent claudication. V. Plethysmographic studies. The significance of the calf flow in rest and in response to timed arrest on the circulation’,Acta. Med. Scand.,174, p. 23

    Article  Google Scholar 

  • Jaap, A. J., Shore, A. C., Garside, I. B., Gamble, J., andTooke J. E. (1993): ‘Increased microvascular fluid permeability in young Type 1 (insulin dependent) diabetic patients’,Diabetolgia,36, pp. 648–652

    Article  Google Scholar 

  • Jindal, G. D., Nerurkar, S. N., Pedhnekar, S. A., Babu, J. P., Kelkar, M. D., Deshpande, A. K., andParulkar, G. B. (1990): ‘Diagnosis of peripheral arterial occlusive diseases using impedance plethysmography’,J. Postgrad. Med.,36, pp. 147–153

    Google Scholar 

  • Katz, M. A. (1977): ‘Capillary filtration measurement by strain gauge. I. Analysis of methods’,Am. J. Physiol.,232 H, pp. 354–360

    Google Scholar 

  • Kim, Y., Woo, H., andLuedtke, A. E. (1989): ‘Impedance tomography and its application in deep venous thrombosis detection’,IEEE Eng. Med. Biol. Mag.,8, pp. 46–49

    Article  Google Scholar 

  • Kooman, J. P., Wijnen, J. A. G., Draaijer, P., Van Bortel, L., Gladziwa, U., Peltenburg, H. G., Struyker-boudier, H. A. J., Van Hooff, J. P., andLeunissen, K. M. L. (1992): ‘Compliance and reactivity of the peripheral venous system in chronic inter-mittent haemodialysis’,Kidney Int.,41, pp. 1041–1048

    Google Scholar 

  • Poulsen, H. I., andNielsen, S. L. (1976): ‘Water filtration of the forearm in short- and long-term diabetes mellitus’,Diabetolgia,12, pp. 437–440

    Article  Google Scholar 

  • Seagar, A. D., Gibbs, J. M., andDavis, F. M. (1984): ‘Interpretation of venous occlusion plethysmographic, measurements using a simple model’,Med. Biol. Eng. Comput,22, pp. 12–18

    Article  Google Scholar 

  • Smith, R. W. M., Freeston, I. L., andBrown, B. H. (1995): ‘A real time electrical impedance tomography system for clinical use— design and preliminary results’,IEEE Trans.,BME-31, pp. 133–140

    Google Scholar 

  • Snedecor, G. W., andCochran, W. G. (1989): ‘Statistical methodsin (Iowa State University Press, Iowa) pp. 183–186

    MATH  Google Scholar 

  • Sumner, D. S. (1985a): ‘Mercury strain-gauge plethysmography’,inBernstein, EF. (Eds.): ‘Noninvasive diagnostic techniques in vascular disease’, (C. V. Mosby, St Louis, Missouri) pp. 133–150

    Google Scholar 

  • Sumner, D. S. (1985b): ‘Volume plethysmography in vascular disease: an overview’inBernstein, E. F. (Ed.): ‘Noninvasive diagnostic techniques in vascular disease’ (C. V. Mosby, St Louis, Missouri) pp. 97–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noordegraaf, A.V., Kunst, P.W.A., Janse, A. et al. Validity and reproducibility of electrical impedance tomography for measurement of calf blood flow in healthy subjects. Med. Biol. Eng. Comput. 35, 107–112 (1997). https://doi.org/10.1007/BF02534139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534139

Keywords

Navigation