Skip to main content
Log in

Analysis and physiologic significance of cholesterol epoxide in animal tissues

  • Symposium: Sterol Analysis Held at the AOCS Annual Meeting in New York, NY, April 29, 1980
  • Published:
Lipids

Abstract

The presence of 5α,6α-epoxy-cholestan-3β-ol, an oxidation product of cholesterol, has been demonstrated in a variety of animal tissues. No definitive biologic role for this sterol has been forthcoming, although the physiologic implications of its occurrence are many. The presence of the epoxide in ultraviolet (UV)-irradiated skin was detected by a combination of thin layer chromatography (TLC) and gas liquid radiochromatographic (radio-GLC) techniques in 1971 and led to the suggestion that it might be responsible for the carcinogenic properties of UV. Subsequently, in vivo levels of this sterol in the skin of UV-irradiated animals were quantitated by radio-GLC after TLC separation and preparation of the radiolabeled acetate ester. Presence of the compound in mouse liver was detected by GLC of the trimethylsilyl (TMS) ether and confirmed by mass spectrometry (MS). In all cases, however, in vivo quantitations were complicated by substrate induction of sterol epoxide hydrase, an enzyme that hydrates the epoxide to form cholestan-3β,5α,6β-triol (triol). Consequently, the relationship of the sterol epoxide to UV-carcinogenesis is as yet unclear and recent studies suggest that if this sterol is involved, then further metabolism of the compound must be required. A practical means of examining the metabolites of the epoxide was developed, employing radio-TLC scanning. Using this procedure, the relationships of substrate concentration, time of reaction and pH optimum to reaction rate were determined. Although in short term in vitro incubations of liver homogenates the bulk of epoxide is hydrated to triol, several other metabolites are detectable by TLC autoradiography. Even though the case for direct involvement of cholesterol epoxide in the etiology of carcinogenesis or other diseases is equivocal, the epoxide or its metabolites may yet prove valuable as a diagnostic aid in revealing abnormal function associated with certain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, A.D., Q. Rev. 14:317 (1960).

    Article  CAS  Google Scholar 

  2. Gray, M.F., T.D.V. Lawrie and C.J.W. Brooks, Lipids 11:836 (1971).

    Article  Google Scholar 

  3. Black, H.S. and W.B. Lo, Nature 234:306 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. Kadis, B., J. Steroid Biochem. 9:75 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. Fioriti, J.A., and R.J. Sims, J. Am. Oil. Chem. Soc. 44:221 (1967).

    PubMed  CAS  Google Scholar 

  6. Lo, W.B. and H.S. Black, J. Invest. Dermatol. 58:278 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Black, H.S., and D.R. Douglas, Cancer Res. 32:2630 (1972).

    PubMed  CAS  Google Scholar 

  8. Douglas, D.R., and H.S. Black, Chromatographia 6:229 (1973).

    Article  CAS  Google Scholar 

  9. Black, H.S., and D.R. Douglas, Cancer Res. 33:2094 (1973).

    PubMed  CAS  Google Scholar 

  10. Black, H.S. and J.L. Laseter, Comp. Biochem. Physiol. 53C:29 (1976).

    Google Scholar 

  11. Fioriti, J.A., N. Buide and R.J. Sims, Lipids 4:142 (1969).

    Article  PubMed  CAS  Google Scholar 

  12. Imai, Y., S. Kikuchi, T. Matsuo, Z. Suzuoki and K. Nishikawa, J. Atheroscler. Res. 7:671 (1967).

    CAS  Google Scholar 

  13. Aramaki, Y., T. Kobayashi, Y. Imai, S. Kikuchi, T. Matsukawa and K. Kanazawa, J. Atheroscler. Res. 7:653 (1967).

    Article  CAS  Google Scholar 

  14. Scallen, T.J., A.K. Dhar and E.D. Loughran, J. Biol. Chem. 246:3168 (1971).

    PubMed  CAS  Google Scholar 

  15. Martin, C.M., and H.J. Nicholas, J. Lipid Res. 14:618 (1973).

    PubMed  CAS  Google Scholar 

  16. Mitton, J.R., N.A. Scholan and G.S. Boyd, Eur. J. Biochem. 20:569 (1971).

    Article  PubMed  CAS  Google Scholar 

  17. Aringer, L., and P. Eneroth, J. Lipid Res. 15:389 (1974).

    PubMed  CAS  Google Scholar 

  18. Smith, L.L. and M.J. Kulig, Cancer Biochem. Biophys. 1:79 (1975).

    CAS  Google Scholar 

  19. Sevanian, A., J.F. Mead and R.A. Stein, Lipids 14:634 (1979).

    PubMed  CAS  Google Scholar 

  20. Tsai, L.S., K. Ijichi, C.A. Hudson and J.J. Meehan, Lipids 15:124 (1980).

    CAS  Google Scholar 

  21. Chan, J.T., and H.S. Black, J. Invest. Dermatol. 66:112 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. Bowden, J.P., G.M. Muschik and J.C. Kawalek, Lipids 14:623 (1979).

    PubMed  CAS  Google Scholar 

  23. Chan, J.T., and H.S. Black, Science 186:1216 (1974).

    Article  PubMed  CAS  Google Scholar 

  24. Black, H.S., and W.A. Lenger, Anal. Biochem. 97:383 (1979).

    Article  Google Scholar 

  25. Fioriti, J.A., M.J. Kanuk, M. George and R.J. Sims, Lipids 5:71 (1970).

    Article  PubMed  CAS  Google Scholar 

  26. Hwang, K., and M.I. Kelsey, Cancer Biochem. Biophys. 3:31 (1978).

    PubMed  CAS  Google Scholar 

  27. Assman, G., D.S. Frederickson, H.R. Sloan, H.M. Fales and R.J. Highet, J. Lipid Res. 16:28 (1975).

    Google Scholar 

  28. Chen, H.W., A.A. Kandutsch and C. Waysmouth, Nature 251:419 (1974).

    Article  PubMed  CAS  Google Scholar 

  29. Chen, H.W., A.A. Kandutsch and H.J. Heiniger, Prog. Exp. Tumor Res. 22:275 (1978).

    PubMed  CAS  Google Scholar 

  30. Peng, S.K., C.B. Taylor, P. Tham, N.T. Werthessen and B. Mikkelson, Arch. Path. Lab. Med. 102:57 (1978).

    PubMed  CAS  Google Scholar 

  31. Chan, J.T., and J.C. Chan, Photobiochem. Photobiophys 1:113 (1980).

    CAS  Google Scholar 

  32. Lo, W.B., and H.S. Black, Experientia 27:1397 (1971).

    Article  PubMed  CAS  Google Scholar 

  33. Roffo, A.H., Am. J. Cancer 17:42 (1933).

    CAS  Google Scholar 

  34. Bergmann, W., H.E. Stavely, L.C. Strong and G.M. Smith, Am. J. Cancer 38:81 (1940).

    CAS  Google Scholar 

  35. Fieser, L.F., Science 119:710 (1954).

    Article  PubMed  CAS  Google Scholar 

  36. Bischoff, F., Adv. Lipid Res. 7:165 (1969).

    PubMed  CAS  Google Scholar 

  37. Bischoff, F., and G. Bryson, Adv. Lipid Res. 15:61 (1977).

    PubMed  CAS  Google Scholar 

  38. Seelkopf, C., and K. Salfelder, Z. Krebsforsch. 64:459 (1962).

    Article  CAS  Google Scholar 

  39. Black, H.S., and J.T. Chan, Oncology 33:119 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. Lo, W.B., and H.S. Black, Nature 246:489 (1973).

    Article  PubMed  CAS  Google Scholar 

  41. Black, H.S., Res. Commun. Chem. Path. Pharmacol. 7:783 (1974).

    CAS  Google Scholar 

  42. Black, H.S., and J.T. Chan, J. Invest. Dermatol. 65:412 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. Reddy, B.S., C.W. Martin and E.L. Wynder, Cancer Res. 37:1697 (1977).

    PubMed  CAS  Google Scholar 

  44. Reddy, B.S. and E.L. Wynder, Cancer 30:2533 (1977).

    Article  Google Scholar 

  45. Reddy, B.S., and K. Watanabe, Cancer Res. 39:1521 (1979).

    PubMed  CAS  Google Scholar 

  46. Smith, L.L., V.B. Smart and G.A.S. Ansari, Mutation Res. 68:23 (1979).

    Article  PubMed  CAS  Google Scholar 

  47. Parsons, P.G., and P. Goss, Aust. J. Exp. Biol. Med. Sci. 56:287 (1978).

    PubMed  CAS  Google Scholar 

  48. Kelsey, M.I., and R.J. Pienta, Cancer Lett. 6:143 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Black, H.S. Analysis and physiologic significance of cholesterol epoxide in animal tissues. Lipids 15, 705–709 (1980). https://doi.org/10.1007/BF02534024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534024

Keywords

Navigation