Skip to main content
Log in

Sterols in yeast subcellular fractions

  • Symposium: Function of Steroids and Other Isopentenoid
  • Published:
Lipids

Abstract

Yeast is the most primitive organism synthesizing substantial amounts of sterols. Because of this eucaryotic organism's versatility in growth conditions, ease of culture, well-defined genetic mechanism, and characteristic subcellar architecture, it is readily applied to studies of the role of sterols in the general economy of the cell. Sterols exist in two major form, as the free sterol, or esterified with long chain fatty acids. The importance of sterols for this organism can be demonstrated using a naturally occurring antimycotic azasterol. This agent inhibits yeast growth. Three effects are seen on sterol synthesis: inhibition of the enzymes Δ14-reductase, sterol methyltransferase, and methylene reductase. Cells cultured on respiratory substrates are more sensitive to inhibition than are cells growing on glucose. We have demonstrated a relationship between respiratory competency and sterol biosynthesis in this organism. Many mutants altered in sterol synthesis are respirationally defective and must growth fermentatively. One clone has temperature conditional respiration. Experiments with purified mitochondria, perpared from this mutant and its isogenic wildtype, show that the mutant organism is able to respire at the higher temperature but lacks the ability to couple respiration to phosphorylation. No similar loss is seen in the wild-type clones. Data are given which support the proposal that, for inclusion in mitochondrial structures, yeast cells may discriminate among sterols available from the total sterol pool in favor of ergosterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smedley-MacLean, I., and E.M. Thomas, Biochem. J. 14:483 (1920).

    Google Scholar 

  2. Dulaney, E.L., E.O. Staply, and K. Simf, Appl. Microbiol. 2:371 (1954).

    PubMed  CAS  Google Scholar 

  3. Maguigan, W.H., and E. Walker, Biochem. J. 34:804 (1940).

    PubMed  CAS  Google Scholar 

  4. Smedley-MacLean, I., Biochem. J. 16:370 (1922).

    Google Scholar 

  5. Madyastha, P.B., and L.W. Parks, Biochim. Biophys. Acta 176:858 (1969).

    PubMed  CAS  Google Scholar 

  6. Bailey, R.B., and L.W. Parks, J. Bacteriol. 124:606 (1975).

    PubMed  CAS  Google Scholar 

  7. Parks, L.W., C. Anding, and G. Ourisson, Eur. J. Biochem. 43:451 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. Anding, C., L.W. Parks, and G. Ourisson, Eur. J. Biochem. 43:459 (1974).

    Article  PubMed  CAS  Google Scholar 

  9. Parks, L.W., and V.K. Stromberg, Lipids 13:29 (1978).

    CAS  Google Scholar 

  10. Sobus, M.T., C.E. Holmlund, and N.F. Whittaker, J. Bacteriol. 130:1310 (1977).

    PubMed  CAS  Google Scholar 

  11. Illingsworth, R.F., A.H. Rose, and A. Beckett, J. Bacteriol. 113:373 (1973).

    Google Scholar 

  12. Clausen, M.K., K. Christiansen, P.K. Jensen, and O. Behnke, FEBS Lett. 43:176 (1974).

    Article  PubMed  CAS  Google Scholar 

  13. Taylor, F.R., and L.W. Parks, Fed. Proc. 37:1704 (1978).

    Google Scholar 

  14. Boeck, L.D., M.M. Hoehn, J.E. Westhead, R.K. Wolter, and D.N. Thomas, J. Antibiot. (Tokyo) 28:95 (1975).

    CAS  Google Scholar 

  15. Gordee, R.S., and T.F. Butler, J. Antibiot. (Tokyo) 28:112 (1975).

    CAS  Google Scholar 

  16. Chamberlin, J.W., M.O. Chaney, S. Chen, P.v. Demarco, H.D. Jones, and J.L. Occolwitz, J. Antibiot. (Tokyo) 27:992 (1974).

    CAS  Google Scholar 

  17. Bailey, R.B., P.R. Hays, and L.W. Parks, J. Bacteriol. 128:730 (1976).

    PubMed  CAS  Google Scholar 

  18. Hays, P.R., L.W. Parks, H.D. Pierce, and A.C. Oehlschlager, Lipids 12:666 (1977).

    PubMed  CAS  Google Scholar 

  19. Hays, P.R., W.D. Neal, and L.W. Parks, Antimicrob. Agents Chemother. 12:185 (1977).

    PubMed  CAS  Google Scholar 

  20. Tyorinoja, K., T. Nurminen, and H. Suomalainen, Biochem. J. 141:133 (1974).

    PubMed  CAS  Google Scholar 

  21. Nurminen, T., K. Knottinen, and H. Suomalainen, Chem. Phys. Lipids 14:15 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. Baraud, J., A. Maurice, and C. Napias, Bull. Soc. Chim. Biol. 52:421 (1970).

    PubMed  CAS  Google Scholar 

  23. Longley, R.P., A.H. Rose, and B.A. Knights, Biochem. J. 108:401 (1968).

    PubMed  CAS  Google Scholar 

  24. Andreason, A.A., and T.J.B. Stier, J. Cell. Comp. Physiol. 41:23 (1953).

    Article  Google Scholar 

  25. Proudlock, J.W., L.W. Wheeldon, D.J. Jollow, and A.W. Linnane, Biochim. Biophys. Acta 152:134 (1968).

    Google Scholar 

  26. Nes, W.R., J.H. Adler, B.C. Sekula, and K. Krevitz, Biochem. Biophys. Res. Commun. 71:1296 (1976).

    Article  PubMed  CAS  Google Scholar 

  27. Demel, R.A., K.R. Bruckdorfer, and L.L.M. VanDeenen, Biochim. Biophys. Acta 255:311 (1972).

    Article  PubMed  CAS  Google Scholar 

  28. Hossack, J.A., and A.H. Rose, J. Bacteriol. 127:67 (1976).

    PubMed  CAS  Google Scholar 

  29. Morpurgo, G., G. Serlupe-Crescenzi, G. Tecce, F. Valente, and D. Venetacci, Nature 201:897 (1964).

    Article  PubMed  CAS  Google Scholar 

  30. Lukins, H.B., S.H. Tham, P.G. Wallace, and A.W. Linnane, Biochem. Biophys. Res. Commun. 23:363 (1967).

    Article  Google Scholar 

  31. Jollow, D., G.M. Kellerman, and A.W. Linnane, J. Cell. Biol. 37:221 (1968).

    Article  PubMed  CAS  Google Scholar 

  32. Watson, K., J.M. Haslam, and A.W. Linnane, J. Cell. Biol. 46:88 (1970).

    Article  PubMed  CAS  Google Scholar 

  33. Ferdouse, M., P.A.D. Rickard, F.J. Moss, and H.W. Blanch, Biotechnol. Bioeng. 14:1007 (1972).

    Article  PubMed  CAS  Google Scholar 

  34. Parks, L.W., and P.R. Staff, J. Cell. Comp. Physiol. 61:61 (1963).

    Article  PubMed  CAS  Google Scholar 

  35. Astin, A.M., J.M. Haslam, and R.A. Woods, Biochem. J. 166:275 (1977).

    PubMed  CAS  Google Scholar 

  36. Astin, A.M., and J.M. Haslam, Biochem. J. 166:287 (1977).

    PubMed  CAS  Google Scholar 

  37. Haslam, J.M., A.M. Astin, and W.W. Nichols, Biochem. J. 166:559 (1977).

    PubMed  CAS  Google Scholar 

  38. Raison, J.K., J. Bioenerg. Biomembr. 4:285 (1973).

    Article  CAS  Google Scholar 

  39. Watson, K., E. Bertoli, and D.E. Griffiths, Biochem. J. 146:401 (1975).

    PubMed  CAS  Google Scholar 

  40. Cobon, G.S., and J.M. Haslam, Biochem. Biophys. Res. Commun. 53:320 (1973).

    Article  Google Scholar 

  41. Aithal, H.N., R.M. Janki, B.D. Gushulak, and E.R. Tustanoff, Arch. Biochem. Biophys. 176:1 (1976).

    Article  PubMed  CAS  Google Scholar 

  42. Ainsworth, P.J., E.R. Tustanoff, and A.J.S. Ball, Biochem. Biophys. Res. Commun. 47:1299 (1972).

    Article  PubMed  CAS  Google Scholar 

  43. Thompson, E.D., and L.W. Parks, Biochem. Biophys. Res. Commun. 57:1207 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. Thompson, E.D., R.B. Bailey, and L.W. Parks, Biochim. Biophys. Acta 334:116 (1974).

    CAS  Google Scholar 

  45. Thompson, E.D., and L.W. Parks, J. Bacteriol. 120:779 (1974).

    PubMed  CAS  Google Scholar 

  46. Dorfman, L., Chem. Rev. 53:47 (1953).

    Article  CAS  Google Scholar 

  47. Gordon, P.A., and P.R. Stewart, Microbios 4:115 (1971).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Parks, L.W., McLean-Bowen, C., Taylor, F.R. et al. Sterols in yeast subcellular fractions. Lipids 13, 730–735 (1978). https://doi.org/10.1007/BF02533753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533753

Keywords

Navigation