Skip to main content
Log in

Steryl glycoside biosynthesis

  • Symposium: Function of Steroids and Other Isopentenoid
  • Published:
Lipids

Abstract

The existence of steroid glycosides has been known for many years and, more recently, their derivatives have been described. Steroid glycosides have been isolated from a number of organisms, however, the largest number of these compounds are found in plants. As to glycoside biosynthesis, the sterols are the most extensively studied steroid group. Of the sterols, only the 4-demethyl sterols have been isolated as glycosides. The glycosidic bond formation is mediated through nucleotide sugars, and UDP-glucose appears to be the most active glycosyl donor. In cell-free studies, the pH of the incubation medium is quite critical and depends on the tissue under investigation, but generally the optimum is near pH 7.0. Formation of steryl glycosides is particulate in nature and is stimulated by ATP, Ca2+, and Mg2+. Similar results are obtained, regardless whether the sterol or the sugar moiety is labeled. Formation of acylsteryl glycosides could occur via two pathways: through the acylation of steryl glycosides or through the transfer of an acylglycosyl unit to a sterol moiety. Results from in vitro experiments suggest that acylsteryl glycoside formation occurs via steryl glycosides. Two acyl transfer reactions have been demonstrated; one is microsomal in nature and involves phosphatidylethanolamine, while the other reaction involves a soluble enzyme and requires galactolipids. In vivo experiments, however, indicate that a second pathway may also exist. If cholesterol-4-14C is used as substrate, a highly radioactive component can be isolated which is readily converted to acylsteryl glycoside, but not to free sterol or steryl glycoside. It is suggested that this component is an intermediate in acylsteryl glycoside biocynthesis. At present, the nature of the component is unknown. It is quite stable, and acid hydrolysis produces free sterol. Saponification produces two products which in thin layer chromatograms closely resemble acylsteryl glycoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, P.F., J. Bacteriol. 108:986 (1971).

    PubMed  CAS  Google Scholar 

  2. Esders, T.W., and R.J. Light, J. Biol. Chem. 247:7494 (1972).

    PubMed  CAS  Google Scholar 

  3. Wojciechowski, Z.A.J. Zimowski, and S. Tyski, Phytochemistry 16:911 (1977).

    Article  CAS  Google Scholar 

  4. Nigrelli, R.F., Zoologica 37:89 (1952).

    CAS  Google Scholar 

  5. Mackie, A.M., and A.B. Turner, Biochem. J. 117:543 (1970).

    PubMed  CAS  Google Scholar 

  6. Williamson, D.G., D.C. Collins, D.S. Layne, R.B. Conn, and S. Bernstein, Biochemistry 8:4299 (1969).

    Article  PubMed  CAS  Google Scholar 

  7. Behr, D., and K. Leander, Phytochemistry 15:1403 (1976).

    Article  CAS  Google Scholar 

  8. Thompson, C., R.C. Henson, R.C. Gueldner, and P.A. Hedin, Lipids 5:283 (1970).

    Article  CAS  Google Scholar 

  9. Collins, D.C., D.G. Williamson, and D.S. Layne, J. Biol. Chem. 245:873 (1970).

    PubMed  CAS  Google Scholar 

  10. Power, F.B., and A.H. Salway, J. Chem. Soc. 103:399 (1913).

    CAS  Google Scholar 

  11. Lepage, M., J. Lipid Res. 5:587 (1964).

    PubMed  Google Scholar 

  12. Kiribuchi, T., T. Mizunaga, and S. Funahashi, Agric. Biol. Chem. 30:770 (1966).

    CAS  Google Scholar 

  13. Elbein, A.D., and W.T. Forsee, Lipids 10:427 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. Tunmann, P., and W. Frank, Arch. Pharm. 305:469 (1972).

    Article  CAS  Google Scholar 

  15. Aneja, R., and P.C. Harries, Chem. Phys. Lipid 12:351 (1971).

    Article  Google Scholar 

  16. Grunwald, C., Ann. Rev. Plant Physiol. 26:209 (1975).

    Article  CAS  Google Scholar 

  17. Kiribuchi, T., C.S. Chen, and S. Funahashi, Agric. Biol. Chem. 29:265 (1965).

    CAS  Google Scholar 

  18. Eichenberger, W., and W. Menke, Z. Naturforsch. 21b:859 (166).

    Google Scholar 

  19. Kostens, J., and G. Willuhn, Planta Med. 24:278 (1973).

    PubMed  CAS  Google Scholar 

  20. Lavintman, N., and C.E. Cardini, Biochim. Biophys. Acta 201:508 (1970).

    PubMed  CAS  Google Scholar 

  21. Khanna, I., R. Seshadri, and T.R. Seshadri, Phytochemistry 13:199 (1974).

    Article  CAS  Google Scholar 

  22. Eichenberger, W., and E.C. Grob, FEBS Lett. 11:177 (1970).

    Article  PubMed  CAS  Google Scholar 

  23. Grunwald, C., Plant Physiol. 45:663 (1970).

    PubMed  CAS  Google Scholar 

  24. Dupéron, R., M. Brillard, and P. Dupéron, C.R. Acad. Sci. Paris 274[D]:2321 (1972).

    Google Scholar 

  25. Bush, P.B., and C. Grunwald, Plant Physiol. 53:131 (1974).

    PubMed  CAS  Google Scholar 

  26. Frasch, W., and C. Grunwald, Plant Physiol. 58:744 (1976).

    PubMed  CAS  Google Scholar 

  27. Hou, C.T., Y. Umemura, M. Nakamura, and S. Funahashi, J. Biochem. 62:351 (1968).

    Google Scholar 

  28. Kauss, H., Z. Naturforsch. 23B:1522 (1968).

    Google Scholar 

  29. Ongun, A., and J.B. Mudd, Plant Physiol. 45:255 (1970).

    Article  PubMed  CAS  Google Scholar 

  30. Baisted, D.J., Phytochemistry 17:435 (1978).

    Article  CAS  Google Scholar 

  31. Mudd, J.B., and R.E. Garcia, in “Recent Advances in the Chemistry and Biochemistry of Plant Lipids,” Edited by T. Galliard and E.I. Mercer, Academic Press, London, 1975, p. 161.

    Google Scholar 

  32. Péaud-Lenoël, M.C., and M. Axelos, C.R. Acad. Sci. Paris 273[D]:1057 (1971).

    Google Scholar 

  33. Forsee, W.T., R.A. Laine, and A.D. Elbein, Arch. Biochem. Biophys. 161:248 (1974).

    Article  CAS  Google Scholar 

  34. Fang, T.-Y., and D.J. Baisted, Phytochemistry 15:273 (1976).

    Article  CAS  Google Scholar 

  35. Eichenberger, W., and E.C. Grob, Chimia 22:46 (1968).

    CAS  Google Scholar 

  36. Péaud-Lenoël, C., and M. Axelos, Carbohydr. Res. 24:247 (1972).

    Article  PubMed  Google Scholar 

  37. Wojciechowski, Z.A., and N. van Uon, Acta Biochim. Pol. 22:25 (1975).

    PubMed  CAS  Google Scholar 

  38. Lercher, M., and Z.A. Wojciechowski, Plant Sci. Lett. 7:337 (1976).

    Article  CAS  Google Scholar 

  39. Bowles, D.J., Planta 134:177 (1977).

    Article  CAS  Google Scholar 

  40. Gessner, T., A. Jacknowitz, and C.A. Vollmer, Biochem. J. 132:249 (1973).

    PubMed  CAS  Google Scholar 

  41. Eichenberger, W., and E.C. Grob, Chimia 23:368 (1969).

    CAS  Google Scholar 

  42. Welsh, K., N. Shaw, and J. Baddiley, Biochem. J. 107:313 (1968).

    PubMed  CAS  Google Scholar 

  43. Brennan, P.J., and D.P. Lehane, Biochim. Biophys. Acta 176:675 (1969).

    PubMed  CAS  Google Scholar 

  44. Forsee, W.T., G. Valkovitch, and A.D. Elbein, Arch. Biochem. Biophys. 172:410 (1976).

    Article  PubMed  CAS  Google Scholar 

  45. Wojciechowski, Z.A., and J. Zimowski, Biochim. Biophys. Acta 398:111 (1975).

    PubMed  CAS  Google Scholar 

  46. Eichenberger, W., and E.C. Grob, Chimia 24:394 (1970).

    CAS  Google Scholar 

  47. Heinz, E., H.P. Dieler, and J. Rullkoetter, Z. Pflanzenphysiol. 75:78 (1975).

    CAS  Google Scholar 

  48. Eichenberger, W., in “Lipids and Lipid Polymers in Higher Plants,” Edited by M. Tevini and H.K. Lichtenthaler, Springer-Verlag, Berlin, 1977, p. 171.

    Google Scholar 

  49. Péaud-Lenoël, M.C., and M. Axelos, C.R. Acad. Sci. Paris 273[D]:1434 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Grunwald, C. Steryl glycoside biosynthesis. Lipids 13, 697–703 (1978). https://doi.org/10.1007/BF02533748

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533748

Keywords

Navigation