Skip to main content
Log in

Erucic acid and phospholipids of newborn rat heart cells in culture

  • Published:
Lipids

Abstract

Erucic acid (Δ13-docosenoic acid), labeled with14C in the 1-or 14-position, was incorporated into fetal calf serum and fed to beating, neonatal rat myocardial cells in culture. Uptake of the docosenoic acid during the first 6 hr of incubation was 41 nM/hr/mg protein in 7-day old cells and 29 nM/hr/mg protein in 14-day old cells. Fifty-seven percent of the14C-activity was taken up from the medium in 24 hr, of which 77% was in the cells and 23% was unaccounted for. Of the14C-activity taken up, 26% was in extractable lipid, with two-thirds in neutral lipid and one-third in phospholipid. Within the neutral lipid fraction, 88% of the14C-activity was present in triglycerides; while in phospholipids, 66% of the14C-activity was in phosphatidylcholine (PC); 14% in phosphatidylethanolamine (PE); 6% in sphingomyelin (SPH) and 1% or less in cardiolipin (DPG). PC had the highest specific activity, followed by SPH and PE. The specific activity of PE was one-half that of SPH when the14C-erucic acid substrate was labeled at the carboxyl position, but increased to equal that of SPH when the substrate was labeled at the double bond. The fatty acids of PC, PE, and SPH were influenced by erucic acid in the growth medium, but the amounts of each phospholipid were not affected. It is proposed that the altered fatty acid composition associated with incorporation of erucic acid or its metabolites into PC, PE, and SPH may affect integrity and function of heart cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellatif, A.M.M., and R.O. Vles, Nutr. Metab. 12:285 (1970).

    PubMed  CAS  Google Scholar 

  2. Beare-Rogers, J.L., E.A. Nera, and H.A. Heggtveit, Can. Inst. Food Technol. J. 4:120 (1971).

    CAS  Google Scholar 

  3. Rocquelin, G., and R. Cluzan, Ann. Biol. Anim. Biochem. Biophys. 8:395 (1968).

    CAS  Google Scholar 

  4. Beare-Rogers, J.L., E.A. Nera, and B.M. Craig, Lipids 7:548 (1972).

    Article  PubMed  CAS  Google Scholar 

  5. Abbellatif, A.M.M., and R.O. Vles, Nutr. Metab. 15:219 (1973).

    Article  Google Scholar 

  6. Blomstrand, R., and L. Svensson, Lipids 9:771 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. Pinson, A., and P. Padieu, in “Recent Advances in Studies on Cardiac Structure and Metabolism,” Vol. 5, Edited by A. Fleckenstein, University Park Press, Baltimore, MD, 1975.

    Google Scholar 

  8. Pinson, A., Ph.D. Thesis, Universit’e de Dijon, France, (1975).

  9. Vasdev, S.C., and K.J. Kako, Biochim. Biophys. Acta 431:22 (1976).

    PubMed  CAS  Google Scholar 

  10. Rogers, C.G., Lipids 9:541 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. Hartree, E.F., Anal. Biochem. 48:422 (1972).

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall, J. Biol. Chem. 193:265 (1951).

    PubMed  CAS  Google Scholar 

  13. Bligh, E.G., and W.J. Dyer, Can. J. Biochem. Physiol. 37:911 (1959).

    PubMed  CAS  Google Scholar 

  14. Bartlett, G.R., J. Biol. Chem. 234:466 (1959).

    PubMed  CAS  Google Scholar 

  15. Parker, F., and N.F. Peterson, J. Lipid Res. 6:455 (1965).

    CAS  Google Scholar 

  16. Rogers, C.G., J. Nutr. 101:1547 (1971).

    PubMed  CAS  Google Scholar 

  17. Dodge, J.T., and G.B. Phillips, J. Lipid Res. 7:387 (1966).

    PubMed  CAS  Google Scholar 

  18. Beare-Rogers, J.L., Can. J. Biochem. 47:257 (1969).

    Article  PubMed  CAS  Google Scholar 

  19. Kates, M., in “Laboratory Techniques in Biochemistry and Molecular Biology,” Vol. 3, Techniques of Lipidology, edited by T.S. Work and E. Work, American Elsevier Publishing Co., New York, NY, 1972, p. 367.

    Google Scholar 

  20. Hojnacki, J.L., and S.C. Smith, J. Chromatog. 90:365 (1974).

    Article  CAS  Google Scholar 

  21. Kritchevsky, D., and S. Malhotra, Ibid. 52:498 (1970).

    Article  CAS  Google Scholar 

  22. Pinson, A., and P. Padieu, FEBS Lett. 39:88 (1974).

    Article  PubMed  CAS  Google Scholar 

  23. Harary, I., L.E. Gerschenson, D.F. Haggarty, Jr., W. Desmond, and J.F. Mead, in “Lipid Metabolism in Tissue Culture Cells,” The Wistar Insitute Press, Philadelphia, PA, 1967, p. 17.

    Google Scholar 

  24. Orloff, K.G., and R.L. McCarl, J. Cell Biol. 57:225 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. Wenzel, D.G., J.W. Wheatley, and G.D. Byrd, Toxicol. Appl. Pharmacol. 17:774 (1970).

    Article  PubMed  CAS  Google Scholar 

  26. Carroll, K.K., Lipids 1:171 (1966).

    Article  CAS  PubMed  Google Scholar 

  27. Craig, B.M., and J.L. Beare, Can. J. Biochem. 45:1075 (1967).

    Article  PubMed  CAS  Google Scholar 

  28. Rocquelin, G., R. Cluzan, N. Vodovar, and R. Levillain, Cah. Nutr. Diet. 8:103 (1973).

    CAS  Google Scholar 

  29. Simon, G., and G. Rouser, Lipids 4:607 (1969).

    PubMed  CAS  Google Scholar 

  30. Craig, B.M., C.G. Youngs, J.L. Beare, and J.A. Campbell, Can. J. Biochem. Physiol. 41:43 (1963).

    PubMed  CAS  Google Scholar 

  31. Gloster, J., and P. Harris, Cardiovasc. Res. 3:45 (1969).

    Article  PubMed  CAS  Google Scholar 

  32. Van Deenen, L.L.M., Ann. N.Y. Acad. Sci. 137:717 (1966).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rogers, C.G. Erucic acid and phospholipids of newborn rat heart cells in culture. Lipids 12, 375–381 (1977). https://doi.org/10.1007/BF02533641

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533641

Keywords

Navigation