Skip to main content
Log in

Kainic acid, AMPA, and dihydrokainic acid effect on uptake and efflux ofd-[3H]aspartic acid in cerebellar slices

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study we show that the glutamate ionotropic agonist kainate (KA) stimulates the efflux of preloadedd-[3H]aspartate (D-[3H]Asp) and inhibits the uptake of this amino acid in cerebellar slices. The effect of this agonist on the efflux of D-[3H]Asp is sensitive to(i) 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX), indicating the involvement of KA/(RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and is(ii) partially tetrodotoxin (TTX)-sensitive, indicating that pre-(TTX-insensitive) and post-synaptic (TTX-sensitive) KA/AMPA receptors are involved. In contrast, the effect on uptake is NBQX- and TTX-insensitive indicating a direct interaction with glutamate transporters. AMPA inhibited D-[3H]Asp uptake and had no effect on D-[3H]Asp efflux. In the same system, the uptake but not the efflux of D-[3H]Asp was affected by dihydrokainate (DHK). The DHK-induced uptake inhibition occurred in the presence of TTX. NBQX inhibited DHK-induced effect at 5 mM but not at 1 mM DHK concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferkany, J. W., and Coyle, J. T. 1983. Kainic acid selectively stimulates the release of endogenous excitatory acidic amino acids. J. Pharmacol. Exp. Ther. 225:399–406.

    PubMed  CAS  Google Scholar 

  2. Johnston, G. A. R., Kennedy, S. M. E., and Twitchin, B. 1978. Action of the neurotoxin Kainic acid on high affinity uptake of L-Glutamate acid in rat brain slices. J. Neurochem. 32:121–127.

    Article  Google Scholar 

  3. Garthwaite, J., and Wilkin, G. P. 1982. Kainic acid receptors and neurotoxicity in adult and immature rat cerebellar slices. Neurosci. 7:2499–2514.

    Article  CAS  Google Scholar 

  4. Drejer, J., Larsson, O. M., and Schousboe, A. 1983. Characterization of uptake and release processes for D- and L-Aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231–243.

    Article  PubMed  CAS  Google Scholar 

  5. Nicholls, D., and Attwell, D. 1990. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.

    Article  PubMed  Google Scholar 

  6. Seeburg, P. H. 1993. The molecular biology of mammalian glutamate receptor channels. Trends Pharmacol. Sci. 16:359–364.

    CAS  Google Scholar 

  7. Naito, S., and Ueda, T. 1985. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44:99–109.

    Article  PubMed  CAS  Google Scholar 

  8. Levi, G., and Gallo, V. 1986. Release studies related to the neurotransmitter role of glutamate in the cerebellum: An overview. Neurochem. Res. 11:1626–1942.

    Article  Google Scholar 

  9. Belhage, B., Rehder, V., Hansen, G. H., Kater, S. B., and Schousboe, A. 1992.3H-D-Aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K+-stimulation. J. Neurosci. Res. 33:436–444.

    Article  PubMed  CAS  Google Scholar 

  10. Ferkany, J. W., and Coyle, J. T. 1983 Evoked release of aspartate and glutamate: disparities between prelabeling and direct measurement. Brain Res. 278:279–282.

    Article  PubMed  CAS  Google Scholar 

  11. Poli, A., Contestabile, A., Migani, P., Rossi, L., Rondelli, C., Virgili, M., Bissoli, R., and Barnabei, O. 1985. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J. Neurochem. 45: 1677–1686.

    Article  PubMed  CAS  Google Scholar 

  12. Levi, G., Patrizio, M., and Gallo, V. 1991. Release of endogenous and newly synthetized glutamate and other amino acids induced by non-N-Methyl-D-Aspartate receptor activation in cerebellar granule cell cultures. J. Neurochem. 56:199–206.

    Article  PubMed  CAS  Google Scholar 

  13. Müller, T., Möller, T., Berger, T., Schnitzer, J., Kettenmann, H. 1992. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science. 256: 1563–1566.

    Article  PubMed  Google Scholar 

  14. Pines, G., Danbolt, N. C., Bjørås, M., Zhang, Y., Bendahan, A., Eide, L., Hermann, K., Storm-Mathisen, J., Seeburg, E., and Kanner, B. I. 1992. Cloning and expression of a rat brain L-Glutamate transporter. Nature. 360:464–467.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka, K. 1993. Expression cloning of a rat glutamate transporter. Neurosci. Res. 16:149–153.

    Article  PubMed  CAS  Google Scholar 

  16. Kanai, Y., and Hediger, M. A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 260:467–471.

    Article  Google Scholar 

  17. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J., and Danbolt, N. C. 1995. Differential expression of two glial glutamate transporters in the rat brain: Quantitative and immunocytochemical observations. J. Neurosci. 15:1835–1853.

    PubMed  CAS  Google Scholar 

  18. Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., Kuncl, R. W. 1994. Localization of neuronal and glial glutamate transporters. Neuron. 13:713–725.

    Article  PubMed  CAS  Google Scholar 

  19. Torp, R., Danbolt, N. C., Babaie, E., Bjørås, M., Seeburg, E., Storm-Mathisen, J., and Otterson, O. P. 1994. Differential expression of two glial glutamate transporters in the rat brain: An In situ hybridization study. Eur. J. Neurosci. 6:936–942.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson, M. B., Sinor, J. D., Dowd, L. A., and Kerwin, J. F. Jr. 1993. Subtypes of sodium-dependent high-affinity L-[3H]Glutamate transport activity: Pahrmacological specificity and regulation by sodium and potassium. J. Neurochem. 60:167–179.

    Article  PubMed  CAS  Google Scholar 

  21. Garlin, A. B., Sinor, A. D., Sinor, J. D., Jee, S. H., Grinspan, J. B., Robinson, M. B. 1995. Pharmacology of sodium-dependent high-affinity L-[3H]Glutamate transport in glial cultures. J. Neurochem. 64:2572–2580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouazzaoui, M., Kannengieser, C., Procksch, O. et al. Kainic acid, AMPA, and dihydrokainic acid effect on uptake and efflux ofd-[3H]aspartic acid in cerebellar slices. Neurochem Res 21, 1527–1533 (1996). https://doi.org/10.1007/BF02533101

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533101

Key Words

Navigation