Skip to main content
Log in

Effects of colestipol hydrochloride and neomycin sulfate on cholesterol turnover in the rat

  • Symposium: Hyperlipidemia Presented at the AOCS 67 th Annual Spring Meeting New Orleans, Louisiana
  • Published:
Lipids

Abstract

Three groups of male rats were fed diets containing the bile acid sequestrant colestipol hydrochloride (1%), neomycin sulfate (0.25%), or basic diet during the test. After 15 days, each rat was injected IV with 3.9 μCi cholesterol-1,2-3H complexed with serum lipoproteins; specific radioactivity of the total serum cholesterol was measured at several time intervals for a period of 7 weeks. Computer analysis of the data indicated that the turnover of cholesterol could best be fitted by a three-pool model. In pool 1, colestipol HCl caused a significant increase in production rate (10.09 to 15.96 mg/day) and the excretion rate constant (0.53 to 0.79 day−1) of cholesterol without significantly altering the size of the pool or serum cholesterol concentrations. These results are compatible with an agent capable of binding bile acids in the rat but do not cause a decrease of the sterol pool because of an adequate compensatory increase in cholesterol biosynthesis. Neomycin SO4 caused a significant reduction in serum cholesterol (9%) without altering turnover parameters and apparently exerts its hypocholesterolemia by some mechanism other than bile acid sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkinson, T.M., K. Gundersen, and N.A. Nelson, Atherosclerosis 11:531 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. Parkinson, T.M., J.C. Schneider, Jr., and W.A. Phillips, Ibid. 17:167 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. Ryan, J.R., and A. Jain, J Clin. Pharmacol. 12:268 (1972).

    CAS  Google Scholar 

  4. Glueck, C.J., S. Ford, Jr., D. Scheel, and P. Steiner, J. Am. Med. Assoc. 222:676 (1972).

    Article  CAS  Google Scholar 

  5. Goodman, D.S., R.P. Noble, and R.B. Dell, J. Clin. Invest. 52:2646 (1973).

    PubMed  CAS  Google Scholar 

  6. Phillips, W.A., J.M. Ratchford, and J.R. Schultz, In: “Atherosclerosis Drug Discovery,” Edited by C.E. Day, Plenum Press, New York, NY, 1976, p. 251.

    Google Scholar 

  7. Leveille, G.A., R.C. Powell, H.E. Sauberlich, and W.T. Nunes, Am. J. Clin. Nutr. 12:421 (1963).

    PubMed  CAS  Google Scholar 

  8. Thompson, G.R., J. Barrowman, L. Gutierrez, and R.H. Dowling, J. Clin. Invest. 50:319 (1971).

    PubMed  CAS  Google Scholar 

  9. Samuel, P., C.H. Holtzman, E. Meilman, and W. Perl, Ibid. 47:1806 (1968).

    Article  PubMed  CAS  Google Scholar 

  10. Powell, R.D., W.T. Nunes, R.S. Harding, and J.B. Vacca, Am. J. Clin. Nutr. 11:156 (1962).

    PubMed  CAS  Google Scholar 

  11. Goldsmith, G.A., J.G. Hamilton, and O.N. Miller, Arch. Int. Med. 105:512 (1960).

    CAS  Google Scholar 

  12. Kowalewski, K., Proc. Soc. Exp. Biol. Med. 102:448 (1959).

    CAS  Google Scholar 

  13. Phillips, W.A., and G.L. Elfring, Circulation 46(Suppl. 2):273 (1972).

    Google Scholar 

  14. Phillips, W.A., and C.P. Berg, J. Nutr. 53:481 (1954), except that coconut oil at 10% was substituted for corn oil, and 18% casein and 0.2% methionine served as the protein source.

    PubMed  CAS  Google Scholar 

  15. Phillips, W.A., W.W. Stafford, and J. Stuut, Jr., Proc. Soc. Exp. Biol. Med. 143:733 (1973).

    PubMed  CAS  Google Scholar 

  16. Abell, L.L., B.B. Levy, B.B. Brodie, and F.E. Kendall, J. Biol. Chem. 195:357 (1952).

    CAS  Google Scholar 

  17. Bush, E.T., Anal. Chem. 36:1082 (1964).

    Article  CAS  Google Scholar 

  18. Duncan, C.H., and M.M. Best, Am. J. Physiol. 194:351 (1958).

    PubMed  CAS  Google Scholar 

  19. Metzler, C.M., Compilation of Symposia Papers, 5th National Meeting APhA Acad. Pharm. Sci., Washington, D.C., p. 380 (1970).

  20. Snedecor, G.W., and W.G. Cochran, “Statistical Methods,” Sixth Edition, The Iowa State University Press, Ames, Iowa (1969).

    Google Scholar 

  21. Grundy, S.M., and E.H. Ahrens, Jr., J. Lipid Res. 10:91 (1969).

    PubMed  CAS  Google Scholar 

  22. Wilson, J.D., J. Clin. Invest. 49:655 (1970).

    PubMed  CAS  Google Scholar 

  23. Huff, J.W., J.L. Gilfillan, and V.M. Hunt, Proc. Soc. Exp. Biol. Med. 114:352 (1963).

    PubMed  CAS  Google Scholar 

  24. Goodman, D.S., R.P. Noble, and R.B. Dell, J. Lipid Res. 14:178 (1973).

    PubMed  CAS  Google Scholar 

  25. Faloon, W.W., I.C. Pace, D. Woolfolk, H. Nankin, K. Wallace, and E.N. Haro, Ann. N.Y. Acad. Sci. 132:879 (1966).

    PubMed  CAS  Google Scholar 

  26. Thompson, G.R., M. MacMahon, and P. Claes, Europ. J. Clin. Invest. 1:40 (1970).

    PubMed  CAS  Google Scholar 

  27. Cayen, M.N., Fed. Proc. 28:268 (1969).

    Google Scholar 

  28. Sedaghat, A., P. Samuel, J.R. Crouse, and E.H. Ahrens, Jr., J. Clin. Invest. 55:12 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Phillips, W.A., Elfring, G.L. Effects of colestipol hydrochloride and neomycin sulfate on cholesterol turnover in the rat. Lipids 12, 10–15 (1977). https://doi.org/10.1007/BF02532965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532965

Keywords

Navigation