Skip to main content
Log in

Effect of inhibitors and phenobarbital pretreatment upon hepatic lipid peroxidation during protein and riboflavin dietary stress in male rats

  • Published:
Lipids

Abstract

Male young albino rats divided into three groups were maintained on the following diets. The normal group was maintained on 13% casein, 45% corn starch, 31% sucrose, 6% salt mixture, 4% peanut oil, and 1% vitamin mixture. The low protein group animals recieved only 5% casein, and the riboflavin-deficient group was fed normal diet, except that the riboflavin was absent from the vitamin mixture and ordinary casein was replaced by 13% vitamin-free casein. The effects of various inhibitors upon triphosphopyridine nucleotide, reduced form-linked lipid peroxide formation by the supernatant fraction of liver at 9000 × g from rats fed a normal diet, a low protein diet, or a riboflavin-deficient diet for 2,4, and 7 weeks were investigated. A significant decrease in triphosphoryridine nucleotide, reduced form-linked and ascorbate-induced lipid peroxidation was noticed in rats fed on low protein and riboflavin-deficient diet. Glutathione inhibited the triphosphopyridine nucleotide, reduced form-linked lipid peroxidation in rats from all three groups. However, the observed response was variable due to the nature of the diet. The magnitude of inhibition was greater in low protein-fed animals than in animals from the riboflavin-deficient and control groups. Cytochrome C inhibited peroxide formation, but the inhibition was greater in rats from the low protein and riboflavin-deficient groups than in animals from the normal group. Tocopherol exhibited the antioxidant property in all three groups of rats. Deoxycholate inhibited lipid peroxide formation in all the three groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wills, E.D., Biochem. J. 123:983 (1971).

    PubMed  CAS  Google Scholar 

  2. May, A.E., and P.B. MaCay, J. Biol. Chem. 243:2288 (1968).

    PubMed  CAS  Google Scholar 

  3. Dillard, C.J., and A.L. Tappel, Lipids 6:715 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. Roubal, W.T., Ibid. 6:62 (1971).

    PubMed  CAS  Google Scholar 

  5. Hartman, D.J., Advan. Gerontol. Res. 23:476 (1968).

    Google Scholar 

  6. Tappel, A.L., Geriatrics 23:97 (1968).

    PubMed  CAS  Google Scholar 

  7. Tappel, A.L., and H. Zalkin, Biochim. Biophys. Acta. 80:333 (1959).

    CAS  Google Scholar 

  8. Ottolenghi, A., Arch. Biochem. Biophys. 79:355 (1959).

    Article  CAS  Google Scholar 

  9. Little, C., and P.J. O'Brien, Biochem. J. 106:419 (1968).

    PubMed  CAS  Google Scholar 

  10. Hunter, F.E., J.M. Gebricki, P.E. Hoffsten, J. Weistein, and A. Scot, J. Biol. Chem. 238:828 (1963).

    PubMed  CAS  Google Scholar 

  11. Mcknight, R.C., and P.F. Hunter, Biochim. Biophys. Acta 98:640 (1965).

    Google Scholar 

  12. Leibowitz, M.E., and M.C. Johnson, J. Lipid Res. 12:662 (1971).

    PubMed  CAS  Google Scholar 

  13. Schacter, B.A., H.S. Marver, and V.A. Mayer, Biochim. Biophys. Acta 279:221 (1972).

    PubMed  CAS  Google Scholar 

  14. Chavpil, M., M. Ping, A.L. Aronson and C. Zukoski, J. Nutr. 104:434 (1974).

    Google Scholar 

  15. Wakizawa, A., and Y. Imai, J. Vitaminol. (Kyoto) 17:32 (1971).

    Google Scholar 

  16. Chen, L.H., and L.V. Packelt, Nutr. Res. Inst. 5:567 (1971).

    Google Scholar 

  17. Will, E.D., Biochem. Pharmacol. 21:1879 (1972).

    Article  Google Scholar 

  18. Patel, J.M., N.R. Galdhar, and S.S. Pawar, Biochem. J. 140:363 (1974).

    PubMed  CAS  Google Scholar 

  19. Hegsted, D.M., J.J. Oleson, C.A. Elvehjem, and E.B. Hart, J. Biol. Chem. 138:459 (1941).

    CAS  Google Scholar 

  20. Schultze, M.O., J. Nutr. 41:103 (1956).

    Google Scholar 

  21. Gornall, A.G., C.J. Bardwill, and M.M. David, J. Biol. Chem. 177:751 (1949).

    Google Scholar 

  22. Bernheim, F., M.L. Bernheim, and K.M. Wilbur, Ibid. 174:257 (1948).

    CAS  Google Scholar 

  23. Warburg, O., in “Manometric Technique,” Edited by W.W. Umberit, R.H. Burris, and J.F. Staffer, Burgess Publishing, Minneapolis, Minn., 1948, p. 7.

    Google Scholar 

  24. Wills, E.D., Biochem. J. 113:325 (1969).

    PubMed  CAS  Google Scholar 

  25. Patel, J.M., and S.S. Pawar, Biochem. Pharmacol. 32:1469 (1974).

    Google Scholar 

  26. Satoshi, I., and A. Nakamura, Jap. J. Nutr. 29:189 (1971).

    Google Scholar 

  27. Marshall, W.J., and A.E.M. McLean, Biochem. J. 122:569 (1971).

    PubMed  CAS  Google Scholar 

  28. Diluzo, N.R., Fed. Proc. 32:1875 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Patel, J.M., Galdhar, N.R., Javalgekar, S.Y. et al. Effect of inhibitors and phenobarbital pretreatment upon hepatic lipid peroxidation during protein and riboflavin dietary stress in male rats. Lipids 10, 220–226 (1975). https://doi.org/10.1007/BF02532484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532484

Keywords

Navigation