Neurochemical Research

, Volume 21, Issue 9, pp 1013–1021 | Cite as

Changes in extracellular acid-base homeostasis in cerebral ischemia

  • Deanna L. Taylor
  • Tihomir P. Obrenovitch
  • Lindsay Symon
Original Articles

Abstract

The purpose of this study was to examine the changes in extracellular CO 3 2− and lactate concentration produced by ischemia, especially in relation to the occurrence of anoxic depolarization, and how some of these changes are altered by the inhibition of organic acid transport systems with probenecid. These data demonstrate that (i) the transmembrane mechanisms contributing to intracellular acid-base regulation (Na+/H+ and HCO 3 /Cl exchanges, and lactate/H+ cotransport) are markedly activated during ischemia; (ii) the efficacy of these mechanisms is abolished as the cellular membrane permeability to ions, including H+ and pH-changing anions, suddenly increases with anoxic depolarization; and (iii) efflux of intracellular lactate during ischemia, and its reuptake with reperfusion, mainly occur via a transporter. These findings imply that residual cellular acid-base homeostasis persists as long as cell depolarization does not occur, and strengthen the concept that anoxic depolarization is a critical event for cell survival during ischemia.

Key Words

Cerebral ischemia extracellular acidosis lactate acid-base regulation microdialysis probenecid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siesjö, B. K., and Bengtsson, F. 1989. Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.PubMedGoogle Scholar
  2. 2.
    Siesjö, B. K., Lundgren, J., and Pahlmark, K. 1990. The role of free radicals in ischemic brain damage: a hypothesis. Pages 319–323,in Krieglstein, J., and Oberpichler, J. (eds.), Pharmacology of Cerebral Ischemia 1990, Wiss. Verlag., Stuttgart.Google Scholar
  3. 3.
    Obrenovitch, T. P., and Richards, D. A. 1995. Extracellular neurotransmitter changes in cerebral ischemia. Cerebrovasc. Brain Metab. Rev. 7:1–54.PubMedGoogle Scholar
  4. 4.
    Siesjö, B. K. 1988. Acidosis and ischemic brain damage. Neurochem. Pathol. 9:31–88.PubMedGoogle Scholar
  5. 5.
    Siesjö, B. K., Katsura, K., Mellergård, P., Ekholm, A., Lundgren, J., and Smith, M.-L. 1993. Acidosis-related brain damage. Prog. Brain Res. 96:23–48.PubMedGoogle Scholar
  6. 6.
    Siesjö, B. K., Bendek, G., Koide, T., Westerberg, E., and Wieloch, T. 1985. Influence of acidosis on lipid peroxidations in brain tissues in vitro. J. Cereb. Blood Flow Metab. 5:253–258.PubMedGoogle Scholar
  7. 7.
    Tombaugh, G. C., and Sapolsky, R. M. 1993. Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61:793–803.PubMedCrossRefGoogle Scholar
  8. 8.
    Chesler, M. 1990. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34:401–427.PubMedCrossRefGoogle Scholar
  9. 9.
    Siesjö, B. K. 1985. Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Pages 121–154,in Kogure, K., Hossmann, K.-A., Siesjö, B. K. and Welsch, F. A. (eds.), Progress in Brain Research vol. 63, Elsevier, Amsterdam.Google Scholar
  10. 10.
    Brooks, K. J., and Bachelard, H. S. 1992. The regulation of intra-cellular pH studied by 31P- and 1H-NMR spectroscopy in super-fused guinea-pig cerebral cortex slices. Neurochem. Int. 21:375–379.PubMedCrossRefGoogle Scholar
  11. 11.
    Ben-Yoseph, O., Badar-Goffer, R. S., Morris, P. G., and Bachelard H. S. 1993. Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-NMR study. Biochem. J. 291:915–919.PubMedGoogle Scholar
  12. 12.
    Conger, K. A., Halsey, J. H., Luo, K.-L., Tan, M.-J., Pohost, G. M., and Hetherington, H. P. 1995. Concomitant EEG, lactate, and phosphorus changes by1H and31P NMR spectroscopy during repeated brief cerebral ischemia. J. Cereb. Blood Flow Metab. 15: 26–32.PubMedGoogle Scholar
  13. 13.
    Ohno, M., Obrenovitch, T. P., Hartell, N., Barrett, S., Bachelard, H. S., and Symon, L. 1989. Simultaneous recording of tissue pCO2, interstitial pH and potassium activity in the rat cerebral cortex during anoxia and the subsequent recovery period. J. Neurol. Res. 11:153–159.Google Scholar
  14. 14.
    Matsumoto, T., Obrenovitch, T. P., Parkinson, N. A., and Symon, L. 1990. Cortical activity, ionic homeostasis, and acidosis during rat brain repetitive ischemia. Stroke 21:1192–1198.PubMedGoogle Scholar
  15. 15.
    Obrenovitch, T. P., Garofalo, O., Harris, R. J., Bordi, L., Ohno, M., Momma, F., Bachelard, H. S., and Symon, L. 1988. Brain tissue concentration of ATP, phosphocreatine, lactate and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 8:866–874.PubMedGoogle Scholar
  16. 16.
    Obrenovitch, T. P., Scheller, D., Matsumoto, T., Tegtmeier, F., Höller, M., and Symon, L. 1990. A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia/reperfusion. J. Neurophysiol. 64: 1125–1133.PubMedGoogle Scholar
  17. 17.
    Chesler, M., Chen, J. C., and Kraig, R. P. 1994. Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes. J. Neurosci. Meth. 53:129–136.CrossRefGoogle Scholar
  18. 18.
    Sugaya, E., Takato, M., and Noda, Y. 1975. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J. Neurophysiol. 38:822–841.PubMedGoogle Scholar
  19. 19.
    Kuhr, W. G., van den Berg, C. J., and Korf, J. 1988. In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J. Cereb. Blood Flow Metab. 8:848–856.PubMedGoogle Scholar
  20. 20.
    Pulsinelli, W. A., and Buchan, A. M. 1988. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 19:913–914.PubMedGoogle Scholar
  21. 21.
    Stewart, P. A. 1981. How to understand acid-base: A quantitative acid-base primer for biology and medicine. Edward Arnold, London.Google Scholar
  22. 22.
    Paxinos, G., and Watson, C. 1986. The Rat Brain in Stereotaxic Coordinates. Academic Press, London.Google Scholar
  23. 23.
    Obrenovitch, T. P., Richards, D. A., Sarna, G. S., and Symon, L. 1993. Combined intracerebral microdialysis and electrophysiological recording: Methodology and applications. J. Neurosci. Meth. 47:139–145.CrossRefGoogle Scholar
  24. 24.
    Kuhr, W. G., and Korf, J. 1988. Extracellular lactic acid as an indicator of brain metabolism: continuous on-line measurement in conscious, freely moving rats with intrastriatal dialysis. J. Cereb. Blood Flow Metab. 8:130–137.PubMedGoogle Scholar
  25. 25.
    Obrenovitch, T. P., Sarna, G. S., Millan, M. H., Lok, S.-Y., Kawauchi, M., Ueda, Y., and Symon, L. 1990. Intracerebral dialysis with on-line enzyme fluorometric detection: A novel method to investigate the changes in the extracellular concentration of glutamic acid. Pages 23–31,in Krieglstein, J., and Oberpichler, H. (eds.), Pharmacology of Cerebral Ischemia 1990, Wiss. Verlag., Stuttgart.Google Scholar
  26. 26.
    Scheller, D., and Kolb, J. 1991. The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J. Neurosci. Meth. 40:31–38.CrossRefGoogle Scholar
  27. 27.
    Kehr, J. 1993. A survey on quantitative microdialysis: theoretical models and practical implications. J. Neurosci. Meth. 48:251–261.CrossRefGoogle Scholar
  28. 28.
    Hansen, A. J., and Nedergaard, M. 1988. Brain ion homeostasis in cerebral ischemia. Neurochem. Pathol. 9:195–209.PubMedGoogle Scholar
  29. 29.
    Obrenovitch, T. P., Sarna, G. S., and Symon, L. 1990. Ionic homeostasis and neurotransmitter changes in ischemia. Pages 97–112,in Krieglstein, J., and Oberpichler, H. (eds.), Pharmacology of Cerebral Ischemia 1990, Wiss. Verlag., Stuttgart.Google Scholar
  30. 30.
    Taylor, D. L., Richards, D. A., Obrenovitch, T. P., and Symon, L. 1994. Time course of changes in extracellular lactate evoked by transient K+-induced depolarization in the rat striatum. J. Neurochem. 62:2368–2374.PubMedCrossRefGoogle Scholar
  31. 31.
    Donoghue, J. P., and Wise, S. P. 1982. The motor cortex of the rat: Cytoarchitecture and microstimulation mapping. J. Comp. Neurol. 212:76–88.PubMedCrossRefGoogle Scholar
  32. 32.
    Blomqvist, P., Mabe, H., Ingvar, M., and Siesjö, B. K. 1984. Models for studying long-term recovery following forebrain ischemia in the rat. 1. Circulatory and functional effects of 4-vessel occlusion. Acta Neurol. Scand. 69:376–384.PubMedGoogle Scholar
  33. 33.
    Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1987. Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat. J. Neurochem. 49:729–734.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith, M.-L., Auer, R. N., and Siesjö, B. K. 1984. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 64:319–332.PubMedCrossRefGoogle Scholar
  35. 35.
    Ginsberg, M. D., Graham, D. I., and Busto, R. 1985. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann. Neurol. 18:470–481.PubMedCrossRefGoogle Scholar
  36. 36.
    Akiyama, T., Sato, M., and Otsuki, S. 1981. Probenecid-induced convulsion and cerebrospinal cyclic nucleotides in the kindling cat preparations. Brain Nerve (Tokyo) 33:1107–1113.Google Scholar
  37. 37.
    Roos, B.-E., Wickström, G., Hartvig, P., and Nilsson, J. L. G. 1980. Quantitation of CSF concentrations and biological activity of probenecid metabolites. Eur. J. Clin. Pharmacol. 17:223–226.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller, J. M., MacGarvey, U., and Beal, M. F. 1992. The effect of peripheral loading with kynurenine and probenecid on extracellular striatal kynurenic acid concentrations. Neurosci. Lett. 146: 115–118.PubMedCrossRefGoogle Scholar
  39. 39.
    Mutch, W. A. C., and Hansen, A. J. 1984. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J. Cereb. Blood Flow Metab. 4: 17–27.PubMedGoogle Scholar
  40. 40.
    Smith, M. L., von Hanwehr, R., and Siesjö, B. K. 1986. Changes in extra- and intracellular pH during and following ischemia in hyperglycaemic and in moderately hypoglycaemic rats. J. Cereb. Blood Flow Metab. 6:574–583.PubMedGoogle Scholar
  41. 41.
    Aronson, P. S. 1985. Kinetic properties of the plasma membrane Na+−H+ exchanger. Annu. Rev. Physiol. 47:545–560.PubMedCrossRefGoogle Scholar
  42. 42.
    Grinstein, S., and Rosthein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger. J. Membr. Biol. 90:1–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Ekholm, A., Asplund, B., and Siesjö, B. K. 1992. Perturbation of cellular energy in complete ischemia: relationship to dissipative ion fluxes. Exp. Brain Res. 90:47–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Nemoto, E. M., and Frinak, S. 1981. Brain tissue pH after global ischemia and barbiturate loading in rat. Stroke 12:77–82.PubMedGoogle Scholar
  45. 45.
    Symon, L., Taylor, D. L., and Obrenovitch, T. P. 1994. Aspects of acid-base homeostasis in ischemia. Pages 51–57,in Cerebral Ischemia and Basic Mechanisms, Hartmann, A., Yatsu, F., and Kuschinsky, W. (eds.) Springer-Verlag, Berlin.Google Scholar
  46. 46.
    Nedergaard, M., Goldman, S. A., and Pulsinelli, W. A. 1989. Lactic acid-induced intracellular acidification in primary cultures of mammalian brain. J. Cereb. Blood Flow Metab. 9(Suppl. 1):S384.Google Scholar
  47. 47.
    Kauppinen, R. A., and Williams, S. R. 1990. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using1H,31P, and1H[13C] nuclear magnetic resonance spectroscopy in the guinea-pig cerebral cortex in vitro. J. Neurosci. Res. 26:356–369.PubMedCrossRefGoogle Scholar
  48. 48.
    Assaf, H. M., Ricci, A. J., Whittingham, T. S., LaManna, J. C., Ratcheson, R. A., and Lust, W. D. 1990. Lactate compartmentation of hippocampal slices: evidence for a transporter. Metab. Brain Dis. 5:143–154.PubMedCrossRefGoogle Scholar
  49. 49.
    Pirtillä, T.-R. M., and Kauppinen, R. A. 1992. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange. Neuroscience 47:155–164.CrossRefGoogle Scholar
  50. 50.
    Lowry, O. H., Passoneau, J. V., Hasselberger, F. K., and Schultz, D. W. 1964. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239:18–30.PubMedGoogle Scholar
  51. 51.
    Walz, W., and Mukerji, S. 1988. Lactate release from cultured astrocytes and neurons: A comparison. Glia 1:366–370.PubMedCrossRefGoogle Scholar
  52. 52.
    Halestrap, A. P., Poole, R. C., and Cranmer, S. L. 1990. Mechanisms and regulation of lactate, pyruvate and ketone body transport across the plasma membrane of mammalian cells and their metabolic consequences. Biochem. Soc. Trans. 18:1132–1135.PubMedGoogle Scholar
  53. 53.
    Lomneth, R., Medrano, S., and Gruenstein, E. I. 1990. The role of transmembrane pH gradients in the lactic acid induced swelling of astrocytes. Brain Res. 523:69–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Walz, W., and Mukerji, S. 1990. Simulation of aspects of ischemia in cell culture: Changes in lactate compartmentation. Glia 3:522–528.PubMedCrossRefGoogle Scholar
  55. 55.
    Schneider, U., Strupp, M., Jund, R., and Grafe, P. 1993. Lactate-proton cotrasport and its activation by hypoxia in the mammalian peripheral nervous system. Pflügers Arch. 420:R25.Google Scholar
  56. 56.
    Benveniste, H., and Hüttemeier, P. C. 1990. Microdialysis—Theory and application. Prog. Neurobiol. 35:195–215.PubMedCrossRefGoogle Scholar
  57. 57.
    Rose, I. A., and Rose, Z. B. 1969. Glycolysis: Regulation and mechanisms of the enzymes. Pages 93–161,in Florkin, M., and Stotz, E. H. (eds.), Comprehensive Biochemistry, Carbohydrate Metabolism, vol. 17, Elsevier, Amsterdam.Google Scholar
  58. 58.
    Shankar, R., and Quastel, J. H. 1972. Effects of tetrodotoxin and anaesthetics on brain metabolism and transport during anoxia. Biochem. J. 126:851–867.PubMedGoogle Scholar
  59. 59.
    Gleitz, J., Beile, A., Khan, S., Wilffert, B., and Tegtmeier, F. 1993. Anaerobic glycolysis and postanoxic recovery of respiration of rat cortical synaptosomes are reduced by synaptosomal sodium load. Brain Res. 611:286–294.PubMedCrossRefGoogle Scholar
  60. 60.
    Nicholson, C., and Phillips, J. M. 1981. Ion diffusion modified by tortuosity and volume fraction in extracellular microenvironment of rat cerebellum. J. Physiol. (Lond.) 321:225–257.Google Scholar
  61. 61.
    Hansen, A. J., and Olsen, C. E. 1980. Brain extracellular space during spreading depression and ischemia. Acta Physiol. Scand. 108:335–365.Google Scholar
  62. 62.
    Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. 1979. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33:439–445.PubMedCrossRefGoogle Scholar
  63. 63.
    Zimmer, R., and Lang, R. 1975. Rates of lactic acid permeation and utilization in the isolated dog brain. Am. J. Physiol. 229:432–437.PubMedGoogle Scholar
  64. 64.
    Schurr, A., West, C. A., and Rigor, B. M. 1988. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328.PubMedCrossRefGoogle Scholar
  65. 65.
    Bock, A. C., Scheller, D., Tegtmeier, F., Dengler, K., Zacharias, E., and Höller, M. 1989. Postischemic recovery of electrophysiological function and extracellular pH during normo-and aglycemic reperfusion. J. Cereb. Blood Flow Metab. 9(Suppl. 1):S642.Google Scholar
  66. 66.
    Cammack, J., Ghasemzadeh, B., and Adams, R. N. 1991. The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry. Brain Res. 565:17–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Griffiths, R., Dunlop, J., Gorman, A., Senior, J., and Grieve, A. 1994. L-trans-pyrrolidine-2,4-dicarboxylate andcis-1-aminocy-clobutane-1,3-dicarboxylate behave as transportable, competitive inhibitors of the high-affinity glutamate transporters. Biochem. Pharmacol. 47:267–274.PubMedCrossRefGoogle Scholar
  68. 68.
    Taylor, D. L., Obrenovitch, T. P., Gotoh, M., and Symon, L. 1994. Inhibition of spreading depression by probenecid. Page 291,in New Advances in Headache Research: 4, Rose, F. C. (ed.), Smith-Gordon Ltd, London.Google Scholar
  69. 69.
    Hansen, A. J., and Zeuthen, T. 1981. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113:437–445.PubMedCrossRefGoogle Scholar
  70. 70.
    Obrenovitch, T. P. 1995. The ischemic penumbra: Twenty years on. Cerebrovasc. Brain Metab. Rev. 7:297–323.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Deanna L. Taylor
    • 1
  • Tihomir P. Obrenovitch
    • 1
  • Lindsay Symon
    • 1
  1. 1.Gough-Cooper Department of Neurological SurgeryInstitute of NeurologyLondonUK

Personalised recommendations