Advertisement

Neurochemical Research

, Volume 21, Issue 10, pp 1201–1207 | Cite as

Acute neurotoxicity ofl-glutamate induced by impairment of the glutamate uptake system

  • Seiji Okazaki
  • Yoshihiko Nishida
  • Hisaomi Kawai
  • Shiro Saito
Original Articles

Abstract

We examined the effect of the glutamate uptake inhibitorl-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) on the neurotoxicity ofl-glutamate in organotypic cultures of rat spinal cord. Eighteen-day-old cultures were incubated with 500 μMl-glutamate, 1 mM PDC, or both. After 72 hours, the tissues were stained for acetylcholinesterase (AChE), and the ventral horn AChE-positive neurons (VHANs) analyzed using morphometry. Neitherl-glutamate nor PDC affected AChE staining, but in combination they produced markedly reduced AChE staining in the dorsal horn and a significant decrease in the number of VHANs (especially the smaller VHANs) as compared with the control. Moreover, treatment with 200 μM PDC for 2 weeks preferentially affected the smaller VHANs. The neurotoxicity ofl-glutamate plus PDC was blocked by the N-methyl-d-aspartate (NMDA) antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP).

Results suggest that glutamate uptake system has an important protective function in the aggravation of acute neuronal damage.

Key Words

l-Glutamate glutamate transport neurotoxicity acetylcholinesterase organotypic explant culture spinal cord 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradford, H. F., Young, A. M. J., and Crowder, J. M. 1987. Continuous glutamate leakage from brain cells is balanced by compensatory high-affinity reuptake transport. Neurosci. Lett. 81:296–302.PubMedCrossRefGoogle Scholar
  2. 2.
    Fonnum, F. 1984. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    McBean, G. J., and Roberts, P. J. 1984. Chronic infusion ofL-glutamate causes neurotoxicity in rat striatum. Brain Res. 290: 372–375.PubMedCrossRefGoogle Scholar
  4. 4.
    Olney, J. W. 1969. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721.PubMedCrossRefGoogle Scholar
  5. 5.
    Sloviter, R. S., and Dempster, D. W. 1985. Epileptic damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res. Bull. 15:39–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Choi, D. W., Maulucci-Gedde, M., and Kriegstein, A. R. 1987. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7: 357–368.PubMedGoogle Scholar
  7. 7.
    Frandsen, A., Drejer, J., and Schousboe, A. 1989. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-d-aspartate (NMDA) as well as non-NMDA receptors. J. Neurochem. 53:297–299.PubMedCrossRefGoogle Scholar
  8. 8.
    Garthwaite J., and Gilligan, G. J. 1984. Kainate-glutamate interactions in rat cerebellar slices. Neuroscience 11:125–138.PubMedCrossRefGoogle Scholar
  9. 9.
    Garthwaite, J. 1985. Cellular uptake disguises action ofl-glutamate on N-methyl-d-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices. Br. J. Pharmac. 85:297–307.Google Scholar
  10. 10.
    Michaels, R., and Rothman, S. M. 1990. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J. Neurosci. 10:283–292.PubMedGoogle Scholar
  11. 11.
    Regan, R. F., and Choi, D. W. 1991. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43:585–591.PubMedCrossRefGoogle Scholar
  12. 12.
    Lipton, S. A., and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.PubMedCrossRefGoogle Scholar
  13. 13.
    Meldrum, B., and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.PubMedCrossRefGoogle Scholar
  14. 14.
    Plaitakis, A., and Caroscio, J. T. 1987. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 22:575–579.PubMedCrossRefGoogle Scholar
  15. 15.
    Plaitakis, A., Constantakakis, E., and Smith, J. 1988. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann. Neurol. 24:446–449.PubMedCrossRefGoogle Scholar
  16. 16.
    Rothstein, J. D., Tsai, G., Kuncl, R. W., Clawson, L., Cornblath, D. R., Drachman, D. B., Pestronk, A., Stauch, B. L., and Coyle, J. T. 1990. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28:18–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Rothstein, J. D., Martin, L. J., and Kuncl, R. W. 1992. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326:1464–1468.PubMedCrossRefGoogle Scholar
  18. 18.
    Rothstein, J. D., Jin, L., Dykes-Hoberg, M., and Kuncl, R. W. 1993. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90:6591–6595.PubMedCrossRefGoogle Scholar
  19. 19.
    Delfs, J., Friend, J., Ishimoto, S., and Saroff, D. 1989. Ventral and dorsal orn acetylcholinesterase neurons are maintained in organotypic cultures of postnatal rat spinal cord explants. Brain Res. 488:31–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Delfs, J., Friend, J., and Saroff, D. 1990. N-methyl-d-aspartic acid (NMDA) effects on spinal cord in organotypic roller tube culture.in F. C. Rose and F. H. Norris (eds.), ALS. New Advances in Toxicology and Epidemiology, pp. 273–281. Smith-Gordon, London.Google Scholar
  21. 21.
    Bridges, R. J., Stanley, M. S., Anderson, M. W., Cotman, C. W., and Chamberlin, A. R. 1991. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J. Med. Chem. 34: 717–725.PubMedCrossRefGoogle Scholar
  22. 22.
    Koelle, G. B., and Friedenwald, J. S. 1949. A histochemical method for localizing cholinesterase activity. Proc. Soc. Exp. Biol. Med. 70:617–622.PubMedGoogle Scholar
  23. 23.
    Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. 1992. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360:471–474.PubMedCrossRefGoogle Scholar
  24. 24.
    McBean, G. J., and Roberts, P. J. 1985. Neurotoxicity ofl-glutamate and DL-threo-3-hydroxyaspartate in the rat striatum. J. Neurochem. 44:247–254.PubMedCrossRefGoogle Scholar
  25. 25.
    Nishida, Y., Delfs, J., Saroff, D., Okazaki, S., and Saito, S. 1993. The neurotoxicity of glutamate agonists on ventral horn neurons in organotypic explant cultures of spinal cord. Can. J. Neurol. Sci. 20(S4): S82.Google Scholar
  26. 26.
    Faden, A. I., and Simon, R. P. 1988. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann. Neurol. 23:623–626.PubMedCrossRefGoogle Scholar
  27. 27.
    Martinez-Arizala, A., Rigamonti, D. D., Long, J. B., Kraimer, J. M., and Holaday, J. W. 1990. Effects of NMDA receptor antagonists following spinal ischemia in the rabbit. Exp. Neurol. 108: 232–240.PubMedCrossRefGoogle Scholar
  28. 28.
    Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100.PubMedGoogle Scholar
  29. 29.
    Stewart, G. R., Olney, J. W., Pathikonda, M., and Snider, W. D. 1991. Excitotoxicity in the embryonic chick spinal cord. Ann. Neurol. 30:758–766.PubMedCrossRefGoogle Scholar
  30. 30.
    Peterson, C., Neal, J. H., and Cotman, C. W. 1989. Development of N-methyl-d-aspartate excitotoxicity in cultured hippocampal neurons. Dev. Brain Res. 48:187–195.CrossRefGoogle Scholar
  31. 31.
    Gonzalez, D. L., Fuchs, J. L., and Droge, M. H. 1993. Distribution of NMDA receptor binding in developing mouse spinal cord. Neurosci. Lett. 151:134–137.PubMedCrossRefGoogle Scholar
  32. 32.
    Urca, G., and Urca, R. 1990. Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-d-aspartate induce permanent neural damage. Brain Res. 529:7–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss, J. H., Koh, J.-Y., and Choi, D. W. 1989. Neurotoxicity of B-N-methylamino-L-alanine (BMAA) and B-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res. 497:64–71.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Seiji Okazaki
    • 1
  • Yoshihiko Nishida
    • 1
  • Hisaomi Kawai
    • 1
  • Shiro Saito
    • 1
  1. 1.The First Department of Internal Medicine, School of MedicineThe University of TokushimaTokushima CityJapan

Personalised recommendations