Neurochemical Research

, Volume 21, Issue 11, pp 1437–1454 | Cite as

Reinforcement processes in opiate addiction: A homeostatic model

Reward/Drug Abuse Mechanisms

Abstract

The development of tolerance and dependence has traditionally been considered an integral aspect of the drug addiction process, and opiate dependence has been studied extensively as a model system in this regard. However, recent emphasis on the positive reinforcing properties of drugs has led to the suggestion that tolerance, dependence, and withdrawal may be of secondary or even negligible importance in motivating compulsive drug use. The current article argues for an integrated view of addiction in the form of a homeostatic neuroadaptation model which emphasizes the motivational significance of both the positive affective state produced by opiates and the negative affective state characteristic of drug withdrawal. The model is supported by evidence at both the behavioral and neural systems levels of analysis. Understanding the important distinction between somatic and affective components of opiate withdrawal is key to recognizing the factors which contribute to the motivational significance of opiate dependence and withdrawal. In addition, the critical role of conditioning processes in the maintenance of compulsive drug use and relapse after periods of abstention is discussed. Finally, it is argued that both the positive reinforcement produced by acute administration of a drug and the negative affective state produced by withdrawal are common to multiple classes of abused drugs, suggesting that an understanding of homeostatic neuroadaptation within motivational systems provides a key to the etiology, treatment and prevention of drug addiction.

Key Words

Opiates neuroadaptation drug dependence drug withdrawal opponent process addiction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaffe, J. H. 1990. Drug addiction and drug abuse. Pages 522–573,in Goodman Gilman, A., Rall, T. W., Nies, A. S., and Taylor, P. (eds.), The Pharmacological Basis of Therapeutics, Pergamon Press, New York.Google Scholar
  2. 2.
    Koob, G. F., Markou, A., Weiss, F., Schulteis, G. 1993. Opponent process and drug dependence: neurobiological mechanisms. Sem. Neurosci. 5:351–358.CrossRefGoogle Scholar
  3. 3.
    Koob, G. F., Stinus, L., Le Moal, M., and Bloom, F. E. 1989 Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci. Biobehav. Rev. 13: 135–140.PubMedCrossRefGoogle Scholar
  4. 4.
    Solomon, R. L. 1980. The opponent-process theory of acquired motivation. Am. Psychol. 35:691–712.PubMedCrossRefGoogle Scholar
  5. 5.
    Di Chiara, G., and North, R. A. 1992. Neurobiology of opiate abuse. Trends Pharmacol. Sci. 13:185–193.PubMedCrossRefGoogle Scholar
  6. 6.
    Gawin, F. H., and Kleber, H. D. 1986. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch. Gen. Psychiatry 43:107–113.PubMedCrossRefGoogle Scholar
  7. 7.
    Kalant, H. 1989. The nature of addiction: An analysis of the problem. Pages 1–28, in Goldstein, A. (ed.), Molecular and Cellular Aspects of the Drug Addictions, Springer-Verlag, New York.CrossRefGoogle Scholar
  8. 8.
    Koob, G. F., and Bloom, F. E. 1988. Cellular and molecular mechanisms of drug dependence. Science 242:715–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Robinson, T. E., and Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–291.Google Scholar
  10. 10.
    Wise, R. A. 1988. The neurobiology of craving: Implications for the understanding and treatment of addiction. J. Abnormal Psychol. 97:118–132.CrossRefGoogle Scholar
  11. 11.
    Stewart, J., De Wit, H., and Eikelboom, R. 1984. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91:251–268.PubMedCrossRefGoogle Scholar
  12. 12.
    Wise, R. A., and Bozarth, M. A. 1987. A psychomotor stimulant theory of addiction. Psychol. Rev. 94:469–492.PubMedCrossRefGoogle Scholar
  13. 13.
    Schulteis, G., Markou, A., Cole, M., and Koob, G. F. 1995. Decreased brain reward produced by ethanol withdrawal. Proc. Nat. Acad. Sci. USA 92:5880–5884.PubMedCrossRefGoogle Scholar
  14. 14.
    Deneau, G., Yanagita, T., and Seevers, M. H. 1969. Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaffe, J. H., 1992. Opiates: Clinical aspects. Pages 186–194, in Lowinson, J. H., Ruiz, P., Millman, R. B., and Langrod, J. G. (eds.), substance Abuse: A Comprehensive Textbook, Williams and Wilkins, Baltimore.Google Scholar
  16. 16.
    Koob, G. F., Pettit, H. O., Ettenberg, A., and Bloom, F. E. 1984. Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat. J. Pharmacol. Exp. Ther. 229: 481–486.PubMedGoogle Scholar
  17. 17.
    Yanagita, T. 1987. Prediction of abuse liability from animal studies. Pages 189–198, in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  18. 18.
    Haertzen, C. A., and Hooks, N. T. Jr. 1969. changes in personality (MMPI) and subjective experience (ARCI) throughout a cycle of addiction to morphine. J. Nerv. Mental Disease 148:606–614.CrossRefGoogle Scholar
  19. 19.
    Goldberg, S. R., Spealman, R. D., and Kelleher, R. T. 1979 Enhancement of drug-seeking behavior by environmental stimuli associated with cocaine or morphine injections. Neuropharmacology 18:1015–1017.PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson, T., and Schuster, C. R. 1964. Morphine self-administration, food reinforced, and avoidance behaviors in rhesus monkey. Psychopharmacologia 5:87–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Weeks, J. R. 1962. Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138: 143–144.PubMedCrossRefGoogle Scholar
  22. 22.
    Weeks, J. R., and Collins, R. J. 1964. Factors affecting voluntary morphine intake in self-maintained addicted rats. Psychopharmacologia 6:267–279.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones, B. E., and Prada, J. A. 1973. Relapse to morphine use in dog. Psychopharmacologia 30:1–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Criswell, H. E., and Ridings, A. 1983. Intravenous self-administration of morphine by naive mice. Pharmacol. Biochem. Behav. 18:467–470.PubMedCrossRefGoogle Scholar
  25. 25.
    Yokel, R. A. 1987. Intravenous self-administration: Response rates, the effects of pharmacological challenges, and drug preference. Pages 1–33, in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  26. 26.
    Goldberg, S. R., Woods, J. H., and Schuster, C. R. 1971. Nalorphine-induced changes in morphine self-administration in rhesus monkeys. J. Pharmacol. Exp. Ther. 176:464–471.PubMedGoogle Scholar
  27. 27.
    Koob, G. F. 1992. Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13:177–184.PubMedCrossRefGoogle Scholar
  28. 28.
    Weeks, J. R., and Collins, R. J. 1976. Changes in morphine self-administration in rats induced by prostaglandin E and naloxone. Prostaglandins 12:11–19.PubMedGoogle Scholar
  29. 29.
    Kornetsky, C., and Esposito, R. U. 1979. Euphorigenic drugs: Effects on reward pathways of the brain. Fed. Proc. 38:2473–2476.PubMedGoogle Scholar
  30. 30.
    Esposito, R., and Kornetsky, C. 1977. Morphine lowering of self-stimulation thresholds: lack of tolerance with long-term administration. Science 195:189–191.PubMedCrossRefGoogle Scholar
  31. 31.
    Esposito, R., and Kornetsky, C. 1978. Optoids and rewarding brain stimulation. Neurosci. Biobehav. Rev. 2:115–122.CrossRefGoogle Scholar
  32. 32.
    Reid, L. D. 1987. Tests involving pressing for intracranial stimulation as an early procedure for screening likelihood of addiction of opioids and other drugs. Pages 391–421, in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  33. 33.
    Schroeder, R. L., Weinger, M. B., Vakassian, L., and Koob, G. F. 1991. Methylnaloxonium diffuses out of the brain more slowly than naloxone after direct intracerebral injection. Neurosci. Lett. 12:173–177.CrossRefGoogle Scholar
  34. 34.
    Britt, M. D., and Wise, R. A. 1983. Ventral tegmental site of opiate reward: Antagonism by a hydrophilic opiate receptor blocker. Brain Res. 258:560–562.CrossRefGoogle Scholar
  35. 35.
    Corrigall, W. A., and Vaccarino, F. J. 1988. Antagonist treatment in nucleus accumbens or periaqueductal grey affects heroin self-administration. Pharmacol. Biochem. Behav. 30:443–450.PubMedCrossRefGoogle Scholar
  36. 36.
    Vaccarino, F. J., Bloom, F. E., Koob, G. F. 1985. Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology 86:37–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Negus, S. S., Henricksen, S. J., Mattox, A., Pasternak, G. W., Portoghese, P. S., Takemori, A. E., Weinger, M. B., and Koob, G. F. 1993. Effects of antagonists selective for mu-opioid, delta-opioid, and kappa-opioid receptors on the reinforcing effects of heroin in rats. J. Pharmacol. Exp. Ther. 265:1245–1252.PubMedGoogle Scholar
  38. 38.
    Pettit, H. O., Ettenberg, A., Bloom, F. E., and Koob, G. F. 1984. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173.PubMedCrossRefGoogle Scholar
  39. 39.
    Zito, G. Vickers, D. C., and Roberts, D. C. S. 1985. Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 23:1029–1036.PubMedCrossRefGoogle Scholar
  40. 40.
    Bozarth, M. A. 1987. Intracranial self-administration procedures for the assessment of drug reinforcement. Pages 173–187, in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  41. 41.
    Bozarth, M. A., and Wise, R. A. 1981. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci. 28:551–555.PubMedCrossRefGoogle Scholar
  42. 42.
    Bozarth, M. A., and Wise, R. A. 1984. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224:516–517.PubMedCrossRefGoogle Scholar
  43. 43.
    Olds, M. E. 1982. Reinforcing effects of morphine in the nucleus accumbens. Brain Res. 237:429–440.PubMedCrossRefGoogle Scholar
  44. 44.
    Goeders, N. E., Lane, J. D., and Smith, J. E. 1984. Intracranial self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol. Biochem. Behav. 20:451–455.PubMedCrossRefGoogle Scholar
  45. 45.
    Olds, M. E. 1979. Hypothalamic substrate for the positive reinforcing properties of morphine in the rat. Brain Res. 168:351–360.PubMedCrossRefGoogle Scholar
  46. 46.
    Britt, M. D., and Wise, R. A. 1981. Opiate rewarding action: independence of the cells of the lateral hypothalamus. Brain Res. 222:213–217.PubMedCrossRefGoogle Scholar
  47. 47.
    Bals-Kubik, R., Ableitner, A., Herz, A., and Shippenberg, T. S. 1993. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J. Pharmacol. Exp. Ther. 264:489–495.PubMedGoogle Scholar
  48. 48.
    Phillips, A. G., and LePiane, F. G. 1980. Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol. Biochem. Behav. 12:965–968.PubMedCrossRefGoogle Scholar
  49. 49.
    Shippenberg, T. S., Bals-Kubik, R., and Herz, A. 1993. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J. Pharmacol. Exp. Ther. 265: 53–59.PubMedGoogle Scholar
  50. 50.
    Alheid, G. F., and Heimer, L. 1988. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of the substantia inominata. Neuroscience 27:1–39.PubMedCrossRefGoogle Scholar
  51. 51.
    Koob, G. F., Robledo, P., Markou, A., and Caine, S. B. 1993. The mesocorticolimbic circuit in drug dependence and reward—a role for the extended amygdala? Pages 289–309, in Kalivas, P. W., and Barnes, C. D. (eds.), Limbic Motor Circuits and Neuropsychiatry, CRC Press, Boca Raton.Google Scholar
  52. 52.
    de Olmos, J. S., Alheid, G. F., and Beltramino, C. A. 1985. Amygdala. Pages 223–334, in Paxinos, G. (ed.), The Rat Nervous System, Academic Press, Sydney.Google Scholar
  53. 53.
    Hubner, C. B., and Koob, G. F. 1990. The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res. 508:20–29.PubMedCrossRefGoogle Scholar
  54. 54.
    Koob, G. F., and Swerdlow, N. R. 1988. Functional output of the mesolimbic dopamine system. Ann. N. Y. Acad. Sci. 537:216–227.PubMedCrossRefGoogle Scholar
  55. 55.
    Bechara, A., and van der Kooy, D. 1989. The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J. Neurosci. 9:3400–3409.PubMedGoogle Scholar
  56. 56.
    Himmelsbach, C. K. 1943. Symposium: can the euphoric, analgetic, and physical dependence effects of drugs be separated? IV. With reference to physical dependence. Fed. Proc. 2:201–203.Google Scholar
  57. 57.
    Lindesmith, A. R. 1968. Addiction and Opiates, Aldine Publishing Co., Chicago.Google Scholar
  58. 58.
    Young, A. M., and Goudie, A. J. 1995. Adaptive processes regulating tolerance to the behavioral effects of drugs. Pages 733–742 in Bloom, F. E., and Kupfer, D. J. (eds.), Psychopharmacology: The Fourth Generation of Progress. Raven Press, New York.Google Scholar
  59. 59.
    Baker, T. B., and Tiffany, S. T. 1985. Morphine tolerance as habituation. Psychol. Rev. 92:78–108.PubMedCrossRefGoogle Scholar
  60. 60.
    Wagner, A. R. 1976. Priming in STM: An information processing mechanism for self-generated or retrieval-generated depression in performance. Pages 95–128, in Tighe, T. J., and Leaton, R. N. (eds.), Habituation: Perspectives from child development, animal behavior, and neurophysiology. Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  61. 61.
    Siegel, S. 1975. Evidence from rats that morphine tolerance is a learned response. J. Comp. Physiol. Psychol. 89:498–506.PubMedCrossRefGoogle Scholar
  62. 62.
    Poulos, C. X., and Cappell, H. 1991. Homeostatic theory of drug tolerance: A general model of physiological adaptation. Psychol. Rev. 98:390–408.PubMedCrossRefGoogle Scholar
  63. 63.
    Maldonado, R., Stinus, L., Koob, G. F. 1996. Molecular Mechanisms of Opiate Withdrawal. Springer, New York.Google Scholar
  64. 64.
    Lett, B. T. 1989. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology 98:357–362.PubMedCrossRefGoogle Scholar
  65. 65.
    Meyer, R. E., and Mirin, S. M. 1979. The Heroin Stimulus: Implications for a Theory of Addiction, Plenum Press, New York.CrossRefGoogle Scholar
  66. 66.
    McAuliffe, W. E., and Gordon, R. A. 1974. A test of Lindesmith's theory of addiction: The frequency of cuphoria among long-term addicts. Am. J. Sociol. 79:795–840.PubMedCrossRefGoogle Scholar
  67. 67.
    Young, A. M., Sannerud, C. A., Steigerwald, E. S., Doty, M. D., Lipinski, W. J., and Tetrick, L. E. 1991. Tolerance to morphine stimulus control: role of morphine maintenance dose. Psychopharmacology 1023:59–67.Google Scholar
  68. 68.
    Shippenberg, T. S., Emmett-Oglesby, M. W., Ayesta, F. J., and Herz, A. 1988. Tolerance and selective cross-tolerance to the motivational effects of opioids. Psychopharmacology 96:110–115.PubMedCrossRefGoogle Scholar
  69. 69.
    Henningfield, J. E., Johnson, R. E., and Jasinski, D. R. 1987. Clinical procedures for the assessment of abuse potential. Pages 573–590, in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  70. 70.
    Adams, J. U., and Holtzman S. G. 1990. Tolerance and dependence after continuous morphine infusion from osmotic pumps measured by operant responding in rats. Psychopharmacology 100:451–458.PubMedCrossRefGoogle Scholar
  71. 71.
    Gellert V. F., and Sparber, S. B. 1977. A comparison of naloxone effects upon body weight loss and suppression of fixed-ratio operant behavior in morphine-dependent rats. J. Pharmacol. Exp. Ther. 201:44–54.PubMedGoogle Scholar
  72. 72.
    Higgins, G. A., and Sellers, E. M. 1994. Antagonist-precipitated opioid withdrawal in rats: Evidence for dissociations between physical and motivational signs. Pharmacol. Biochem. Behav. 48: 1–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Koob, G. F., Wall, T. L., and Bloom, F. E. 1989. Nucleus accumbens as a substrate for the aversive stimulus effects of opiate withdrawal. Psychopharmacology 98:530–534.PubMedCrossRefGoogle Scholar
  74. 74.
    Schulteis, G., Markou, A., Gold, L. H., Stinus, L., and Koob, G. F. 1994. Relative sensitivity to naloxone of multiple indices of opiate withdrawal: A quantitative dose-response analysis. J. Pharmacol. Exp. Ther. 271:1391–1398.PubMedGoogle Scholar
  75. 75.
    Brady, L. S., and Holtzman, S. G. 1981. Locomotor activity in morphine-dependent and post-dependent rats. Pharmacol. Biochem. Behav. 14:361–370.PubMedCrossRefGoogle Scholar
  76. 76.
    Hand, T. H., Koob, G. F., Stinus, L., and Le Moal, M. 1988. Aversive properties of opioid receptor blockade are centrally mediated and are potentiated by previous exposure to opiates. Brain Res. 474:364–368.PubMedCrossRefGoogle Scholar
  77. 77.
    Mucha, R. F. 1987. Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res. 418:214–220.PubMedCrossRefGoogle Scholar
  78. 78.
    Stinus, L., Le Moal, M., and Koob, G. F. 1990. The nucleus accumbens and amygdala as possible substrates for the aversive stimulus effects of opiate withdrawal. Neurosci. 37:767–773.CrossRefGoogle Scholar
  79. 79.
    Schaefer, G. J., and Michael, R. P. 1986. Changes in response rates and reinforcement thresholds for intracranial self-stimulation during morphine withdrawal. Pharmacol. Biochem. Behav. 25:1263–1269.PubMedCrossRefGoogle Scholar
  80. 80.
    Schulteis, G., Markou, A., Yackey, M., and Koob, G. F. 1994. Motivational consequences of naloxone-precipitated opiate withdrawal. NIDA Res. Monogr. 141 (vol 2): 90.Google Scholar
  81. 81.
    Emmett-Oglesby, M. W., Mathis, D. A., Moon, R. T. Y., and Lal, H. 1990. Animal models of drug withdrawal symptoms. Psychopharmacology 101:292–309.PubMedCrossRefGoogle Scholar
  82. 82.
    Gauvin, D. V., and Holloway, F. A. 1991. Cue dimensionality in the 3-choice pentylene-tetrazole-saline-chlordiazepoxide discrimination task. Behav. Pharmacol. 2:417–428.PubMedCrossRefGoogle Scholar
  83. 83.
    Goldberg, S. R. 1976. Stimuli associated with drug injections as events that control behavior. Pharmacol. Rev. 27:325–340.Google Scholar
  84. 84.
    Carrera, M. R. A., Schulteis, G., and Koob, G. F. 1995. Increased sensitivity to naloxone on heroin self-administration in dependent rats. Soc. Neurosci. Abstr. 21:725.Google Scholar
  85. 85.
    Azorlosa, J. L., Stitzer, M. L., and Greenwald, M. K. 1994. Opioid physical dependence development: effects of single versus repeated morphine pretreatments and of subjects' opioid exposure history. Psychopharmacology 114:71–80.CrossRefGoogle Scholar
  86. 86.
    Bickel, W. K., Stitzer, M. L., Liebson, I. A., and Bigelow, G. E. 1988. Acute physical dependence in man: Effects of naloxone after brief morphine exposure. J. Pharmacol. Exp. Ther. 244:126–132.PubMedGoogle Scholar
  87. 87.
    Heishman, S. J., Stitzer, M. L., Bigelow, G. E., and Liebson, I. A. 1989. Acute opioid physical dependence in postaddict humans: Naloxone dose effects after brief morphine exposure. J. Pharmacol. Exp. Ther. 248:127–134.PubMedGoogle Scholar
  88. 88.
    Heishman, S. J., Stitzer, M. L., Bigelow, G. E., and Liebson, I. A. 1989. Acute opioid physical dependence in humans: Effects of varying the morphine-naloxone interval. I. J. Pharmacol. Exp. Ther. 250:485–491.PubMedGoogle Scholar
  89. 89.
    Jones, R. T. 1980. Dependence in non-addict humans after a single dose of morphine. Pages 557–560, in Way, E. L. (ed.), Endogenous and Exogenous Opiate Agonists and Antagonists. Pergamon Press, New York.Google Scholar
  90. 90.
    Kirby, K. C., and Stitzer, M. L. 1993. Opioid physical dependence development in humans: effect of time between agonist pretreatments. Psychopharmacology 112:511–517.PubMedCrossRefGoogle Scholar
  91. 91.
    Kirby, K. C., Stitzer, M. L., and Heishman, S. J. 1990. Acute opioid physical dependence in humans: Effect of varying the morphine-naloxone interval II. J. Pharmacol. Exp. Ther. 256:730–737.Google Scholar
  92. 92.
    Adams, J. U., and Holtzman, S. G. 1990. Pharmacologic characterization of the sensitization to the rate-decreasing effects of naltrexone induced by acute opioid pretreatment in rats. J. Pharmacol. Exp. Ther. 253:483–489.PubMedGoogle Scholar
  93. 93.
    Meyer, D. R., and Sparber, S. B. 1977. Evidence of possible opiate dependence during the behavioral depressant action of a single dose of morphine. Life. Sci. 21:1087–1094.PubMedCrossRefGoogle Scholar
  94. 94.
    Schulteis, G., Heyser, C. J., and Koob, G. F. in press. Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: Potentiation with a second morphine treatment.Google Scholar
  95. 95.
    Easterling, K. W., and Holtzman, S. G. 1995. Intracranial self-stimulation (ICSS): sensitization to an opioid antagonist following chronic agonist pretreatment in rats. Soc. Neurosci. Abstr. 21:721.Google Scholar
  96. 96.
    Young, A. M. 1986. Effects of acute morphine pretreatment on the rate-decreasing and antagonist activity of naloxone. Psychopharmacology 88:201–208.PubMedCrossRefGoogle Scholar
  97. 97.
    Schulteis, G., Heyser, C. J., and Koob, G. F. 1995 Acute dependence on opiates: Progressive increase in severity with long intervals between successive morphine treatments. Soc. Neurosci. Abstr. 21:723.Google Scholar
  98. 98.
    Council Reports 1972. Treatment of morphine-type dependence by withdrawal methods. J. Am. Med. Assoc. 219:1611–1615.CrossRefGoogle Scholar
  99. 99.
    Fraser, H. F., and Isbell, H. 1960. Human pharmacology and addiction liabilities of phenazocine and levophenalcylmorphan. Bull. Narcotics 12:15–23.Google Scholar
  100. 100.
    Blasig, J., Herz, A., Reinhold, K., and Zieglgansberger, S. 1973. Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats. Psychopharmacologia 33:19–38.PubMedCrossRefGoogle Scholar
  101. 101.
    Gellert, V. F., and Holtzman, S. G. 1978. Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J. Pharmacol. Exp. Ther. 205:536–546.PubMedGoogle Scholar
  102. 102.
    Wei, E., Loh, H. H., and Way, E. L. 1973. Quantitative aspects of precipitated abstinence in morphine-dependent rats. J. Pharmacol. Exp. Ther. 184:398–403.PubMedGoogle Scholar
  103. 103.
    Mansour, A., Khachaturian, H., Lewis, M. E., Akil, H., and Watson, S. J. 1988. Anatomy of CNS opioid receptors. Trends Neurosci. 11:308–314.PubMedCrossRefGoogle Scholar
  104. 104.
    Pasternak, G. W. 1988. The Opiate Receptors, The Humana Press, New York.Google Scholar
  105. 105.
    Koob, G. F., Maldonado, R., and Stinus, L. 1992. Neural substrates of opiate withdrawal. Trends Neurosci. 15:186–191.PubMedCrossRefGoogle Scholar
  106. 106.
    Maldonado, R., Stinus, L., Gold, L. H., and Koob, G. F. 1992. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther. 261:669–677.PubMedGoogle Scholar
  107. 107.
    Franz, D. N., Hare, B. D., and McCloskey, K. L. 1982. Spinal sympathetic neurons: possible sites of opiate withdrawal suppression by clonidine. Science 215:1643–1645.PubMedCrossRefGoogle Scholar
  108. 108.
    Harris, G. C., and Aston-Jones, G. 1994. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371:155–157.PubMedCrossRefGoogle Scholar
  109. 109.
    Schulteis, G., Koob GF (1994). Dark side of drug dependence. Nature 371:108.PubMedCrossRefGoogle Scholar
  110. 110.
    Cheney, D. L., and Goldstein, A. 1971. Tolerance to opioid narcotics: Time course and reversibility of physical dependence in mice. Nature 232:477–478.PubMedCrossRefGoogle Scholar
  111. 111.
    Jacob, J. J., and Michaud, G. M. 1974. Acute physical dependence in the waking dog after a single low dose of morphine. Psychol. Med. 4:27–273.CrossRefGoogle Scholar
  112. 112.
    Kosersky, D. S., Harris, R. A., and Harris, L. S. 1974. Naloxoneprecipitated jumping activity in mice following the acute administration of morphine. Eur. J. Pharmacol. 26:122–124.PubMedCrossRefGoogle Scholar
  113. 113.
    Krystal, J. H., and Redmond, D. E. Jr. 1983. A preliminary description of acute physical dependence on morphine in the vervet monkey. Pharmacol. Biochem. Behav. 18:289–291.PubMedCrossRefGoogle Scholar
  114. 114.
    Martin, W. R., and Eades, C. G. 1964. A comparison between acute and chronic physical dependence in the chronic spinal dog. J. Pharmacol. Exp. Ther. 146:385–394.PubMedGoogle Scholar
  115. 115.
    Ramabadran, K. 1983. Naloxone-precipitated abstinence in mice, rats and gerbils acutely dependent on morphine. Life Sci. 33 (Suppl 1):385–388.PubMedCrossRefGoogle Scholar
  116. 116.
    Wikler, A. Recent progress in research on the neurophysiological basis of morphine addiction. Am. J. Psychiatry 105:328–338.Google Scholar
  117. 117.
    Davis, W. M., and Smith, S. G. 1987. Conditioned reinforcement as a measure of the rewarding properties of drugs. Pages 199–209,in Bozarth, M. A., Methods of Assessing the Reinforcing Properties of Abused Drugs, Springer-Verlag, New York.CrossRefGoogle Scholar
  118. 118.
    Childress, A. R., Ehrman, R., Rohsenow, D. J., Robbins, S. J., and O'Brien, C. P. 1992. Classically conditioned factors in drug dependence. Pages 56–69, in Lowinson, J. H., Ruiz, P., Millman, R. B., and Langrod, J. G. (eds.), Substance Abuse: A Comprehensive Textbook, Williams and Wilkins, Baltimore.Google Scholar
  119. 119.
    Wikler, A. 1973. Dynamics of drug dependence: Implications of a conditioning theory of research and treatment. Arch. Gen. Psychiatry 28:611–616.PubMedCrossRefGoogle Scholar
  120. 120.
    O'Brien, C. P., Greenstein, R., Ternes, J., McLellan, T., and Grabowski, J. 1979 Unreinforced self-injections: effects of rituals and outcome in heroin addicts. NIDA Res. Monogr. 27:275–281.PubMedGoogle Scholar
  121. 121.
    Baldwin, H. A., and Koob, G. F. 1993. Rapid induction of conditioned opiate withdrawal. Neuropsychopharmacology 8:15–21.PubMedGoogle Scholar
  122. 122.
    Goodwin, D. W. 1992. Alcohol: Clinical Aspects. Pages 144–151, in: Lowinson, J. H., Ruiz, P., Millman, R. B., and Langrod, J. G. (eds.) Substance Abuse: A Comprehensive Textbook, Williams and Wilkins, Baltimore.Google Scholar
  123. 123.
    Mendelson, J. H., and Mello, N. K. 1979. Biological concommitants of alcoholism. N. Engl. J. Med. 301:912–921.PubMedCrossRefGoogle Scholar
  124. 124.
    File, S. E., Baldwin, H. A., and Hitchcott, P. K. 1989. Flumazenil but not nitrendipine reverses the increased anxiety during ethanol withdrawal in the rat. Psychopharmacology 98:252–264.CrossRefGoogle Scholar
  125. 125.
    Rassnick, S., Heinrichs, S. C., Britton, K. T., and Koob, G. F. 1993. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res. 605:25–32.PubMedCrossRefGoogle Scholar
  126. 126.
    Merlo-Pich, E., Lorang, M., Yeganeh, M., Rodriguez de Fonseca, F., Raber, J., Koob, G. F., and Weiss, F. 1995. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J. Neurosci. 15:5439–5447.PubMedGoogle Scholar
  127. 127.
    Richter R., and Weiss, F. submitted. In vivo CRF release in rat amygdala is increased during withdrawal after chronic cocaine self-administration with unlimited access.Google Scholar
  128. 128.
    Heinrichs, S. C., Menzaghi, F., Schulteis, G., Koob, G. F., and Stinus, L. 1995. Suppression of corticotropin-releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav. Pharmacol., 6:74–80.PubMedCrossRefGoogle Scholar
  129. 129.
    Kokkinidis, L., and McCarter, B. D. 1990. Postcocaine depression and sensitization of brain stimulation reward: analysis of reinforcement and performance effects. Pharmacol. Biochem. Behav. 36:463–471.PubMedCrossRefGoogle Scholar
  130. 130.
    Markou, A., and Koob, G. F. 1991. Postcocaine anhedonia: An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26.PubMedGoogle Scholar
  131. 131.
    Weiss, F., Markou, A., Lorang M. T., and Koob, G. F. 1992. Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res. 593:314–318.PubMedCrossRefGoogle Scholar
  132. 132.
    Weiss, F., Parsons, L. H., Schulteis, G., Hyytia, P., Lorang, M. T., Bloom, F. E., and Koob, G. F. 1996. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and serotonin release in dependent rats. J. Neurosci. in press.Google Scholar
  133. 133.
    Koob, G. F. 1996. Drug addiction: The Yin and Yang of hedonic homeostasis. Neuron 16:893–896.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Division of Psychopharmacology, Department of NeuropharmacologyThe Scripps Research InstituteLa Jolla
  2. 2.Neuroscience GroupNeurocrine Biosciences, Inc.San Diego

Personalised recommendations