Neurochemical Research

, Volume 21, Issue 11, pp 1417–1423 | Cite as

Morphine-induced increase in D-1 receptor regulated signal transduction in rat striatal neurons and its facilitation by glucocorticoid receptor activation: Possible role in behavioral sensitization

  • Anton N. M. Schoffelmeer
  • Pieter Voorn
  • Allert J. Jonker
  • George Wardeh
  • Patrizia Nestby
  • Louk J. M. J. Vanderschuren
  • Taco J. De Vries
  • Arie H. Mulder
  • Guno H. K. Tjon
Reward/Drug Abuse Mechanisms


One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors.

Key Words

Morphine D-1 receptors glucocorticoid receptors cyclic AMP dynorphin gene expression rat striatum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Piazza, P. V., Deminiere, J. M., Le Moal, M., and Simon, H. 1990. Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res. 514:22–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Kalivas, P. W., and Stewart, J. 1991. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16:223–244.PubMedCrossRefGoogle Scholar
  3. 3.
    Robinson, T. E., and Berridge, K. C. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–291.PubMedCrossRefGoogle Scholar
  4. 4.
    Valadez, A. and Schenk, S. 1994. Persistence of the ability of amphetamine preexposure to facilitate acquisition of cocaine self-administration. Pharmacol. Biochem. Behav. 47:203–205.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu, J. L., Nickolenko, J., and Sharp, F. R. 1994. Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 91:8537–8541.PubMedCrossRefGoogle Scholar
  6. 6.
    Simpson, J. N., Wang, J. Q., and McGinty, J. F. 1995. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience 69: 441–457.PubMedCrossRefGoogle Scholar
  7. 7.
    Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, Y. N., Duman, R. S., and Nestler, E. J. 1994. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13: 1235–1244.PubMedCrossRefGoogle Scholar
  8. 8.
    Konradi, C., Cole, R. L., Heckers, S., and Hyman, S. E. 1994. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14:5623–5634.PubMedGoogle Scholar
  9. 9.
    Cole, R. L., Konradi, C., Douglass, J., and Hyman, S. E. 1995. Neuronal adaptation to amphetamine and dopamine: Molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823.PubMedCrossRefGoogle Scholar
  10. 10.
    Henry, D. J., and White, F. J. 1991. Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258:882–890.PubMedGoogle Scholar
  11. 11.
    Wolf, M. E., White, F. J., and Hu, X-T. 1994. MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14: 1735–1745.PubMedGoogle Scholar
  12. 12.
    Tjon, G. H. K., De Vries, T. J., Ronken, E., Hogenboom, F., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1994. Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its δ- and κ-opioid receptor regulation. Eur. J. Pharmacol. 252:205–212.PubMedCrossRefGoogle Scholar
  13. 13.
    Pfeiffer, A., and Herz, A. 1984. Endocrine actions of opioids. Horm. Metab. Res. 16:386–397.PubMedCrossRefGoogle Scholar
  14. 14.
    Rivier, C., and Vale, W. 1987. Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Res. 422:403–406.PubMedCrossRefGoogle Scholar
  15. 15.
    Roberts, A. J., Lessov, C. N., and Phillips, T. J. 1995. Critical role for glucocorticoid receptors in stress- and ethanol-induced locomotor sensitization. J. Pharmacol. Exp. Ther. 275:790–797.PubMedGoogle Scholar
  16. 16.
    Swerdlow, N. R., Koob, G. F., Cador, M., Lorang, M., and Hauger, R. L. 1993. Pituitary-adrenal axis responses to acute amphetamine in the rat. Pharmacol. Biochem. Behav. 45:629–637.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans, R. M., and Arriza, J. L. 1989. A molecular framework for the action of glucocorticoid hormones in the central nervous system. Neuron 2:1105–1112.PubMedCrossRefGoogle Scholar
  18. 18.
    Cador, M., Dulluc, J. and Mormede, P. 1993. Modulation of the locomotor response to amphetamine by corticosterone. Neuroscience 56:981–988.PubMedCrossRefGoogle Scholar
  19. 19.
    Deroche, V., Piazza, P. V., Casolini, P., Le Moal, M., and Simon, H. 1993. Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depend on corticosterone secretion. Brain Res. 611:352–356.PubMedCrossRefGoogle Scholar
  20. 20.
    Deroche, V., Marinelli, M., Maccari, S., Le Moal, M., Simon, H., and Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7181–7188.PubMedGoogle Scholar
  21. 21.
    Piazza, P. V., Marinelli, M., Jodogne, C., Deroche, V., Rouge-Pont, F., Maccari, S., Le Moal, M., and Simon, H. 1994. Inhibition of corticosterone synthesis by metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Res. 658:259–264.PubMedCrossRefGoogle Scholar
  22. 22.
    Rouge-Pont, F., Marinelli, M., Le Moal, M., Simon, H., And Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine by cocaine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7189–7195.PubMedGoogle Scholar
  23. 23.
    Schoffelmeer, A. N. M., De Vries, T. J., Vanderschuren, L. J. M. J., Tjon, G. H. K., Nestby, P., Wardeh, G., and Mulder, A. H. 1995. Glucocorticoid receptor activation potentiates the morphine-induced adaptive increase in dopamine D-1 receptor efficacy in γ-aminobutyric acid neurons of rat striatum/nucleus accumbens. J. Pharmacol. Exp. Ther. 274:1154–1160.PubMedGoogle Scholar
  24. 24.
    Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates. 2nd ed. Sydney, Academic Press.Google Scholar
  25. 25.
    Voorn, P., and Docter, G. J. 1992. A rostrocaudal gradient in the synthesis of enkephalin in nucleus accumbens. Neuroreport 3: 161–164.PubMedCrossRefGoogle Scholar
  26. 26.
    Angulo, J. A., and McEwen, B. 1994. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res. Rev. 19:1–28.PubMedCrossRefGoogle Scholar
  27. 27.
    Klitenick, M. A., DeWitte, P., and Kalivas, P. W. 1992. Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurosci. 12:2623–2632.PubMedGoogle Scholar
  28. 28.
    Ronken, E., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Interacting presynaptic kappa-opioid and GABAa receptors modulate dopamine release from striatal synaptosomes. J. Neurochem. 61:1634–1639.PubMedCrossRefGoogle Scholar
  29. 29.
    Pickel, V. M., Chan, J., and Sesack, S. R. 1993. Cellular substrates for interactions between dynorphin terminals and dopamine dendrites in rat ventral tegmental area and substantia nigra. Brain Res. 602:275–289.PubMedCrossRefGoogle Scholar
  30. 30.
    Schoffelmeer, A. N. M., De Vries, T. J., Hogenboom, F., and Mulder, A. H. 1993. Mu- and delta-opioid receptors inhibitorily linked to dopamine-sensitive adenylate cyclase in rat striatum display a selectivity profile towards endogenous opioid peptides different from that of presynaptic mu, delta and kappa receptors. J. Pharmacol. Exp. Ther. 267:205–210.PubMedGoogle Scholar
  31. 31.
    Spanagel, R., Herz, A., and Shippenberg, T. S. 1990. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J. Neurochem. 55:1734–1740.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Vliet, B. J., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1991. Reciprocal effects of chronic morphine administration on stimulatory and inhibitory G-protein α subunits in primary cultures of rat striatal neurons. Eur. J. Pharmacol. Mol. Pharmacol. 208:341–342.CrossRefGoogle Scholar
  33. 33.
    Van Vliet, B. J., Van Rijswijk, A. L. C. T., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Adaptive changes in the number of Gs- and Gi-proteins underlie adenylyl cyclase sensitization in morphine-treated rat striatal neurons. Eur. J. Pharmacol. Mol. Pharmacol. 245:23–29.CrossRefGoogle Scholar
  34. 34.
    Kalivas, P. W., and Duffy, P. 1993. Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13:266–275.PubMedGoogle Scholar
  35. 35.
    Kalivas, P. W., and Duffy, P. 1993. Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13:276–284.PubMedGoogle Scholar
  36. 36.
    McDougall, S. A., Duke, M. A., Bolanos, C. A., and Crawford, C. A. 1994. Ontogeny of behavioral sensitization in the rat: effects of direct and indirect dopamine agonists. Psychopharmacology 116:483–490.PubMedCrossRefGoogle Scholar
  37. 37.
    Ronken, E., Mulder, A. H., and Schoffelmeer, A. N. M. 1994. Chronic activation of mu- and kappa-opioid receptors in cultured catecholaminergic neurons from rat brain causes neuronal supersensitivity without receptor desensitization. J. Pharmacol. Exp. Ther. 268:595–599.PubMedGoogle Scholar
  38. 38.
    Saito, N., Guitart, X., Hayward, M., Tallman, J. F., Duman, R. S., and Nestler, E. J. 1989. Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc. Natl. Acad. Sci., USA 86:3906–3910.PubMedCrossRefGoogle Scholar
  39. 39.
    De Vries, T. J., Schoffelmeer, A. N. M., Tjon, G. H. K., Nestby, P., Mulder, A. H., and Vanderschuren, L. J. M. J. 1996. Mifepristone prevents the expression of long-term behavioural sensitization to amphetamine. Eur. J. Pharmacol., 307:R3-R4.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Anton N. M. Schoffelmeer
    • 1
  • Pieter Voorn
    • 2
  • Allert J. Jonker
    • 2
  • George Wardeh
    • 1
  • Patrizia Nestby
    • 1
  • Louk J. M. J. Vanderschuren
    • 1
  • Taco J. De Vries
    • 1
  • Arie H. Mulder
    • 1
  • Guno H. K. Tjon
    • 1
  1. 1.Research Institute Neurosciences Vrije Universiteit, Department of Pharmacology, Medical FacultyGraduate School Neurosciences AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Anatomy, Medical FacultyAmsterdamThe Netherlands

Personalised recommendations