Advertisement

Neurochemical Research

, Volume 21, Issue 11, pp 1397–1410 | Cite as

Association of enkephalin catabolism inhibitors and CCKB antagonists: A potential use in the management of pain and opioid addiction

  • Bernard P. Roques
  • Florence Noble
Physiology and Behavior

Abstract

The overlapping distribution of opioid and cholecystokinin (CCK) peptides and their receptors (μ and δ opioid receptors; CCK-A and CCK-B receptors) in the central nervous system have led to a large number of studies aimed at clarifying the functional relationships between these two neuropeptides. Most of the pharmacological studies devoted to the role of CCK and enkephalins have been focused on the control of pain. Recently the existence of regulatory mechanisms between both systems have been proposed, and the physiological antagonism between CCK and endogenous opioid systems has been definitely demonstrated by coadministration of CCK-B selective antagonists with RB 101, a systemically active inhibitor, which fully protects enkephalins from their degradation. Several studies have also been done to investigate the functional relationships between both systems in development of opioid side-effects and in behavioral responses. This article will review the experimental pharmacology of association of enkephalin-degrading enzyme inhibitors and CCK-B antagonists to demonstrate the interest of these molecules in the management of both pain and opioid addiction.

Key words

Endogenous enkephalins cholecystokinin pain addiction peptidase inhibitors CCK-B antagonists 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simon, E.J., Hiller, J.M., and Edelman, I. 1973. Stereospecific binding of the potent narcotic analgesic3H-etorphin to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70:1947–1949.PubMedGoogle Scholar
  2. 2.
    Pert, C.B., and Snyder, S.H. 1973. Oprate receptor: demonstration in nervous tissue. Science 179: 1011–1014.PubMedGoogle Scholar
  3. 3.
    Terenius, L. 1973. Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat brain cortex. Acta Pharmacol. Toxicol. 32: 317–320.Google Scholar
  4. 4.
    Hughes, J., Smith, T.W., Kosterlitz, H.W., Fotherghill, L.A., Morgan, B.A., and Morris, H.R. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature (Lond.) 258: 577–579.Google Scholar
  5. 5.
    Young, E., Bronstein, D., and Akil, H. 1993. Proopiomelanocortin biosynthesis, processing and secretion: functional implications. Pages 393–421,in Herz, A., Akil, H., and Simon, E.J. (eds.) Handbook of Experimental Pharmacology, Opioids I, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  6. 6.
    Rossier, J., 1993. Biosynthesis of enkephalins and proenkephalinderived peptides. Pages 423–447,in Herz, A., Akil, H., and Simon, E.J. (eds.), Handbook of Experimental Pharmacology, Opioids I, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  7. 7.
    Day, R., Trujillo, K.A., and Akil, H., 1993. Prodynorphin biosynthesis and posttranslational processing. Pages 449–470,in Herz, A., Akil, H., and Simon, E.J. (eds.), Handbook of Experimental Pharmacology, Opioids I, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  8. 8.
    Besse, D., Lombard, M.C., Zajac, J.M., and Roques, B.P. 1990. Pre-and postsynaptic distribution of μ, δ and κ opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res. 521: 15–22.PubMedGoogle Scholar
  9. 9.
    Galina, Z.H., and Kastin, A.J. 1986. Exfstence of anti-opiate systems as illustrated by MIF-1/Tyr-MIF-1. Life Sci. 39: 2153–2159.PubMedGoogle Scholar
  10. 10.
    Faris, P.L., Komisaruk, B.R., Watkins, L.R., and Mayer, D.J. 1983. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219: 310–312.PubMedGoogle Scholar
  11. 11.
    Tang, J., Yang, H.Y.T., and Costa, E. 1984. Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc. Natl. Acad. Sci. USA 81: 5002–5005.PubMedGoogle Scholar
  12. 12.
    Meunier, J.C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P., Butour, J.L., Guillemot, J.C., Ferrara, P., Monsarrat, B., Mazarguil, H., Vassart, G., Parmentier, M., and Costentin, J. 1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature, 377: 532–535.PubMedGoogle Scholar
  13. 13.
    Reinscheid, R.K., Nothacker, H.P., Bourson, A., Ardati, A., Henningsen, R.A., Bunzow, J.R., Grandy, D.K., Langen H., Monsma, Jr. F.J., and Civelli, O. 1995. Orphanin FQ: a neuropeptide that activates an opioid like G protein-coupled receptor. Science 270: 792–794.PubMedGoogle Scholar
  14. 14.
    Roques, B.P., Noble, F., Daugé, V., Fournié-Zaluski, M.C., and Beaumont, A. 1993. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45:87–146.PubMedGoogle Scholar
  15. 15.
    Crawley, J.N., and Corwin, R.L. 1994. Biological actions of cholecystokinin. Peptides 15: 731–755.PubMedGoogle Scholar
  16. 16.
    Olson, G.A., Olson, R.D., and Kastin, A.J. 1995. Endogenous opiates: 1994. Peptides 16: 1517–1556.PubMedGoogle Scholar
  17. 17.
    Vanderhaeghen, J.J., Signeau, J.C., and Gepts, W. 1975. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature (Lond.) 257: 604–605.Google Scholar
  18. 18.
    Moran, T.H., Robinson, P.H., Goldrich, M.S., and McHugh, P.R. 1986. Two brain cholecystokinin receptors: implication for behavioral actions, Brain Res. 362: 175–179.PubMedGoogle Scholar
  19. 19.
    Kopin, A.S., Lee, Y.M., McBride, E.W., Miller, L.J., Lu, M., Lin, H.Y., and Kolakowski Jr. L.F. 1992. Expression, cloning and characterization of the canine carietal cell gastrin receptor. Proc. Natl. Acad. Sci. USA 89: 3605–3609.PubMedGoogle Scholar
  20. 20.
    Wank, S.A., Harkins, R., Jensen, R.T., Shapira, H., Weerth, A., and Slattery, T. 1992. Purification, molecular cloning and functional expression of the cholecystokinin receptor from rat pancreas. Proc. Natl. Acad. Sci. USA 89: 3125–3129.PubMedGoogle Scholar
  21. 21.
    Lee, Y.M., Beinborn, M., McBride, E.W., Lu, M., Kolakowski Jr., L.F., and Kopin, A.S. 1993. The human brain cholecystokinin-B/gastrin receptor. J. Biol. Chem. 268: 8164–8169.PubMedGoogle Scholar
  22. 22.
    Gall, C., Lauterborn, J., Burks, D., and Seroogy, K. 1987. Colocalization of enkephalins and cholecystokinin in discrete areas of rat brain. Brain Res. 403: 403–408.PubMedGoogle Scholar
  23. 23.
    Pohl, M., Benoliel, J.J., Bourgoin, S., Lombard, M.C., Mauborgne, A., Taquet, H., Carayon, A., Besson, J.M., Cesselin, F., and Hamon, M. 1990. Regional distribution of calcitonin generalated peptide-, substance P-, cholecystokinin-, Met5-enkephalin-, and dynorphin A (1–8)-like materials in the spinal cord and dorsal root ganglia of adult rats: effects of dorsal rhizotomy and neonatal capsaicin. J. Neurochem. 55: 1122–1130.PubMedGoogle Scholar
  24. 24.
    Baber, N.S., Dourish, C.T., and Hill, D.R. 1989. The role of CCK, caerulein, and CCK antagonists in nociception. Pain 39: 307–328.PubMedGoogle Scholar
  25. 25.
    Noble, F., Derrien, M., and Roques, B.P. 1993. Modulation of opioid analgesia by CCK at the supraspinal level. Evidence of regulatory mechanisms between CCK and enkephalin systems in the control of pain. Br. J. Pharmacol. 109: 1064–1070.PubMedGoogle Scholar
  26. 26.
    Miller, K. K., and Lupica, C.R. 1994. Morphine-induced excitation of pyramidal neurons is inhibited by cholecystokinin in the CA1 region of the rat hippocampal slice. J. Pharmacol. Exp. Ther. 268: 753–761.PubMedGoogle Scholar
  27. 27.
    Valverde, O., Maldonado, R., Fournié-Zaluski, M.C., and Roques, B.P. 1994. Cholecystokinin B antagonist strongly potentiate antinociception mediated by endogenous enkephalins. J. Pharmacol. Exp. Ther. 270: 77–88.PubMedGoogle Scholar
  28. 28.
    Liu, N.J., Xu, T., Xu, C., Li, C. Q., Yu. Y. X., Kang, H.G., and Han, J.S. 1995. Cholecystokinin octapeotide reverses μ-opioid-receptor-mediated inhibition of calcium current in rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 275: 1293–1299.PubMedGoogle Scholar
  29. 28a.
    Roques, B. P., Fournié-Zaluski, M. C., Soroca, E., Lecomte, J. M., Malfroy, B., Llorens, C., and Schwartz, J. C. 1980. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature (Lond.) 288:286–288.Google Scholar
  30. 29.
    Fournié-Zaluski, M. C., Coric, P., Turcaud, S., Lucas, E., Noble, F., Maldonado, R., and Roques, B. P. 1992. Mixed-inhibitorprodrug as a new approach towards systemically active inhibitors of enkephalin degrading enzymes. J. Med. Chem. 35:2473–2481.PubMedGoogle Scholar
  31. 30.
    Noble, F., Soleilhac, J. M., Soroca-Lucas, E., Turcaud, S., Fournié-Zaluski, M. C., and Roques, B. P. 1992. Inhibition of the enkephalin metabolizing enzymes by the first systemically active mixed inhibitor prodrug RB 101 induces potent analgesic responses in mice and rats. J. Pharmacol. Exp. Ther. 261:181–190.PubMedGoogle Scholar
  32. 31.
    Delay-Goyet, P., Zajac, J. M., and Roques, B. P. 1989. Effects of repeated treatment with haloperidol on rat striatal neutral endopeptidase EC 3.4.24.11, and on μ and σ opioid binding sites: comparison with chronic morphine and chronic kelatorphan. Neurosci. Lett. 103:197–202.PubMedGoogle Scholar
  33. 32.
    Roques, B. P. 1988. Physiological role of endogenous peptide effectors studies with peptidase inhibitors. Kidney Int. 34:S27-S33.Google Scholar
  34. 33.
    Roques, B. P., and Noble, F. 1995. Dual inhibitors of enkephalindegrading enzymes (neutral endopeptidase 24.11 and aminopeptidase N) as potential new medications in the management of pain and opioid addiction. Pages 104–145,in Rapaka, R. S., and Sorer, H. (eds.) NIDA Research Monograph 147, Discovery of Novel Opioid Medications, NIH Publication.Google Scholar
  35. 34.
    Aghajanian, G. K. 1978. Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by clonidine. Nature (Lond.) 276:186–188.Google Scholar
  36. 35.
    Williams, J. T., Christie, M. J., North, R. A., and Roques, B. P. 1987. Potentiation of enkephalin action by peptidase inhibitors in rat locus coeruleus in vitro. J. Pharmacol. Exp. Ther. 243: 186–188.Google Scholar
  37. 36.
    Duman, R. S., Tallman, J. F., and Nestler, E. J. 1988. Acute and chronic opiate regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J. Pharmacol. Exp. Ther. 246:1033–1039.PubMedGoogle Scholar
  38. 37.
    Maldonado, R., Stinus, L., Gold, L. H., and Koob, G. F. 1992. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther. 261: 669–677.PubMedGoogle Scholar
  39. 38.
    Noble F., and Roques, B. P. 1995. Assessment of endogenous enkephalins efficacy in the hot plate test in mice: comparative study with morphine. Neurosci. Lett. 185:75–78.PubMedGoogle Scholar
  40. 39.
    Abbadie, C., Honoré, P., Fournié-Zaluski, M. C., Roques, B. P., and Besson, J. M. 1994. Effects of opioids and non-opioids on c-Fos-like immunoreactivity induced in rat lumbar spinal cord neurons by noxious heat stimulation. Eur. J. Pharmacol. 258: 215–227.PubMedGoogle Scholar
  41. 40.
    Tölle, T. R., Schadrack, J., Castro-Lopes, J. M., Evan, G., Roques, B. P., and Zieglgänsberger, W. 1994. Effects of kelatorphan and morphine before and after noxious stimulation on immediate-early gene expression in rat spinal cord neurons. Pain 56:103–112.PubMedGoogle Scholar
  42. 41.
    Maldonado, R., Blendy, J. A., Tzavara, F., Gass, P., Roques, B.P., Hanoune, J., and Schütz, G. 1996. A mutation in the CREB gene strongly reduces the withdrawal syndrome in morphine dependent mice. Science, 273:657–659.PubMedGoogle Scholar
  43. 42.
    Matsuoka, I., Maldonado, R., Defer, N., Nöel, F., Hanoune, J., and Roques, B.P. 1994. Chronic morphine administration causes region-specific increase of brain type VIII adenylyl cyclase mRNA. Eur. J. Pharmacol. (Mol. Pharmacol. Sec.) 268:215–221.Google Scholar
  44. 43.
    Faris, P.L., McLaughlin, C. L., Baile, C. A., Olney, J. W., and Komisaruk, B. R. 1984. Morphine analgesia potentiated but tolerance not affected by active immunization against cholecystokinin. Science 226:1215–1217.PubMedGoogle Scholar
  45. 44.
    Watkins, L. R., Kinscheck, I. B., Kaufman, E. F. S., Miller, J., Frenk, H., and Mayer, D. J. 1985. Cholecystokinin antagonists selectively potentiate analgesia induced by endogenous opiates. Brain Res. 327:181–190.PubMedGoogle Scholar
  46. 45.
    Dourish, C. T., Clark, M. L., and Iversen, S. D. 1988. Analgesia induced by restrain stress is attenuated by CCK and enhanced by the CCK antagonist MK-329, L-365,260 and CR-1409. Soc. Neurosci. Abstr. 14:120.Google Scholar
  47. 46.
    Hendrie, C. A., Shepherd, J. K., and Rodgers, R. J. 1989. Differential effects of the CCK antagonist, MK 329, on analgesia induced by morphine, social conflict (opioid) and defeat experience (non-opioid) in male mice. Neuropharmacology 28:1025–1032.PubMedGoogle Scholar
  48. 47.
    Ruiz-Gayo, M., Daugé, V., Menant, I., Begue, D., Gacel, G., and Roques, B. P. 1985. Synthesis and biological activity of Boc(Nle28-31)CCK7 a highly potent CCK analog. Peptides 6:415–420.PubMedGoogle Scholar
  49. 48.
    Charpentier, B., Durieux, C., Pélaprat, D., Dor, A., Reibaud, M., Blanchard, J. C., and Roques, B. P. 1988. Enzyme resistant CCK analogs with high affinities for central receptors. Peptides 9:835–841.PubMedGoogle Scholar
  50. 49.
    Hill, R. G., Hughes, J., and Pittaway, K. M. 1987. Antinociceptive action of cholecystokinin octapeptide (CCK8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors. Neuropharmacology 26:289–300.PubMedGoogle Scholar
  51. 50.
    Magnuson, D. S. K., Sullivan, A. F., Simonnet, G., Roques, B. P., and Dickenson, A. H. 1990. Differential interactions of cholecystokinin and FLFQPQRF-NH2 with μ and δ opioid antinociception in the rat spinal cord. Neuropeptides 16:213–218.PubMedGoogle Scholar
  52. 51.
    Rattray, M., and De Belleroche, J. 1987. Morphine action on cholecystokinin octapeptide release from rat periaqueductal grey slices: sensitisation by naloxone. Neuropeptides 10:189–200.PubMedGoogle Scholar
  53. 52.
    Rodriguez, R. E., and Sacristan, M. P. 1989. In vivo, release of CCK-8 from the dorsal horn of the rat: inhibition by DAGOL. FEBS Lett. 250:215–217.PubMedGoogle Scholar
  54. 53.
    Benoliel, J. J., Bourgoin, S., Mauborgne, A., Legrand, J. C., Hamon, M., and Cesselin, F. 1991. Differential inhibitory/stimulatory modulation of spinal CCK release by μ and δ opioid agonists, and selective blockade of μ-dependent inhibition by κ receptor stimulation. Neurosci. Lett. 124:204–207.PubMedGoogle Scholar
  55. 54.
    Benoliel, J. J., Mauborgne, A., Bourgoin, S., Legrand, J. C., Hamon, M., and Cesselin, F. 1992. Oploid control of the in vitro release of CCK-like material from the rat substantia nigra. J. Neurochem. 58:916–922.PubMedGoogle Scholar
  56. 55.
    Ruiz-Gayo, M., Durieux, C., Fournié-Zaluski, M. C., and Roques, B. P. 1992. Stimulation of δ-opioid receptors reduces the in vivo binding of the cholecystokinin (CCK)-B-selective agonist [3H]pBC 264: evidence for a physiological regulation of CCKergic systems by endogenous enkephalins. J. Neurochem. 59:1805–1811.PubMedGoogle Scholar
  57. 56.
    Maldonado, R., Derrien, M., Noble, F., and Roques, B. P. 1993. Association of the peptidase inhibitor RB 101 and a CCK-B antagonist strongly enhances antinociceptive response. Neuro-Report 4:947–950.Google Scholar
  58. 57.
    Valverde, O, Blommaert, A. G. S., Fournié-Zaluski, M. C., Roques, B. P., and Maldonado, R. 1995. Weak tolerance to the antinociceptive effect induced by the association of a peptidase inhibitor and a CCK-B receptor antagonist. Eur.J. Pharmacol. 286:79–93.PubMedGoogle Scholar
  59. 58.
    Noble, F., Blommaert, A., Fournié-Zaluski, M. C., and Roques, B. P. 1995. A selective CCK-B receptor antagonist potentiates μ-, but not δ-opioid receptor-mediated antinociception in the formalin test. Eur. J. Pharmacol. 273:145–151.PubMedGoogle Scholar
  60. 59.
    Wang, X. J., Wang, X. H., and Han, J. S. 1990. Chelecystokinin octapeptide antagonized opioid analgesia mediated by μ- and κ-but not δ-receptors in the spinal cord of the rat. Brain Res. 523: 5–10.PubMedGoogle Scholar
  61. 60.
    Wang, X. J., and Han, J. S. 1990. Modification by cholecystokinin octapeptide of the binding of μ-, δ- and κ-opioid receptors. J. Neurochem. 55:1379–1382.PubMedGoogle Scholar
  62. 61.
    Noble, F., Smadja, C., and Roques, B. P. 1994. Role of endogenous cholecystokinin in the facilitation of mu-mediated antinociception by delta-opioid agonists. J. Pharmacol. Exp. Ther. 271:1127–1134.PubMedGoogle Scholar
  63. 62.
    Portoghese, P. S., Nagase, H., MaloneyHuss, K. E., Lin, C. E., and Takemori, A. E. 1991. Role of spacer and address components in peptidomimetic δ opioid receptor antagonists related to naltrindole. J. Med. Chem. 34:1715–1720.PubMedGoogle Scholar
  64. 63.
    Portoghese, P. S., Sultana, M., Nagase, H., and Takemori, A. E. 1992. A highly selective δ1-opioid receptor antagonist: 7-benzylidenenaltrexone. Eur. J. Pharmacol. 218:195–196.PubMedGoogle Scholar
  65. 64.
    Noble, F., Fournié-Zaluski, M. C., and Roques, B. P. 1996. Opposite role of δ1 and δ2 opioid receptors activated by endogenous or exogenous opioid agonists on the endogenous cholecystokinin system: further evidence for δ opioid receptor heterogeneity. Neuroscience, In press.Google Scholar
  66. 65.
    Kamei, J., Iwamoto, Y., Suzuki, T., Nagase, H., Misawa, M., and Kasuya, Y. 1993. Differential modulation of μ-opioid receptor-mediated antitussive activity by δ-opioid receptor agonists in mice. Eur. J. Pharmacol. 234:117–120.PubMedGoogle Scholar
  67. 66.
    Attal, N., Desmeules, J., Kayser, V., Jazat, F., and Guibaud, G. 1991. Effects of opioids in a rat model of peripheral mononeuropathy. Pages 245–258,in Besson, J. M., and Guilbaud, G. (eds.), Lesions of primary afferent fibers as a tool for the study of clinical pain, Elsevier Science Publishers, Amsterdam.Google Scholar
  68. 67.
    Foley, K. M. 1993. Opioid analgesics in clinical pain management. Pages 697–743,in Herz, A., Akil, H., and Simon, E. J. (eds.), Handbook of Experimental Pharmacology, Opioids II, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  69. 68.
    Hökfelt, T., Xu, Z., Verge, V., Villar, M., Elde, R., Xu, X. J., and Wiesenfeld-Hallin, Z. 1994. Messenger plasticity in primary sensory neurons. Pages 71–84,in Hökfelt, T., Schaible, H. G., and Schmidt, R. F. (eds.), Neuropeptides, Nociception, and Pain, Chapman and Hall, Weinheim.Google Scholar
  70. 69.
    Verge, V. M. K., Wiesenfeld-Hallin, Z., and Hökfelt, T. 1993. Cholecystokinin in mammalian primary sensory neurons and spinal cord: in situ hybridization studies on rat and monkey spinal ganglia. Eur. J. Neurosci. 5:240–250.PubMedGoogle Scholar
  71. 70.
    Stanfa, L., Dickenson, A., Xu, X. J., and Wiesenfeld-Hallin, Z. 1994. Cholecystokinin and morphine analgesia. Trends Pharmacol. Sci. 15:65–66.PubMedGoogle Scholar
  72. 71.
    Xu, X. J., Puke, M. J. C., Verge, V. M. K., Wiesenfeld-Hallin, Z., Hughes, J., and Hökfelt, T. 1993. Up-regulation of cholecystokinin in primary sensory neurons is associated with morphine insensitivity in experimental neuropathic pain in the rat. Neurosci. Lett. 129–132.Google Scholar
  73. 72.
    Nichols, M. L., Bian, D., Ossipov, M. H., Lai, J., and Porreca, F. 1995. Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neurophatic pain in rats. J. Pharmacol. Exp. Ther. 275:1339–1345.PubMedGoogle Scholar
  74. 73.
    Xu, X. J., Hökfelt, T., Hughes, J., and Wiesenfeld-Hallin, Z. 1994. The CCK-B antagonist CI 988 enhances the reflex-depressive effect of morphine in axotomized rats. NeuroReport 5: 718–720.PubMedGoogle Scholar
  75. 74.
    Xu, X. J., Hao, J. X., Seiger, A., Hughes, J., Hökfelt, T., and Wiesenfeld-Hallin, Z. 1994. Chronic pain-related behaviors in spinally injured rats: evidence for functional alaterations of the endogenous cholecystokinin and opioid systems. Pain 56:271–277.PubMedGoogle Scholar
  76. 75.
    Maldonado, R., Féger, J., Fournié-Zaluski, M. C., and Roques, B. P. 1990. Differences in physical dependence induced by selective μ or δ opioid agonists and by endogenous enkephalins protected by peptidase inhibitors. Brain Res. 520:247–254.PubMedGoogle Scholar
  77. 76.
    Zhou, Y., Sun, Y. H., Zhang, Z. W., and Han, J. S. 1992. Acelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. NeuroReport 3:1121–1123.PubMedGoogle Scholar
  78. 77.
    Pu, S. F., Zhuang, H. X., Lu, Z. B., Wu, X. R., and Han, J. S. 1992. Cholecystokinin gene expression in rat amygdaloid neurons. Normal distribution and effect of morphine tolerance. Mol. Brain Res. 21:183–189.Google Scholar
  79. 78.
    Pohl, M., Collin, E., Benoliel, J. J., Bourgoin, S., Cesselin, F., and Hamon, M. 1992. Cholecystokinin (CCK)-like material and CCK mRNA levels in the rat brain and spinal cord after acute or repeated morphine treatment. Neuropeptides 21:193–200.PubMedGoogle Scholar
  80. 79.
    Panerai, A. E., Rovati, L. C., Cocco, E., Sacerdote, P., and Montegazza, P. 1987. Dissociation of tolerance and dependence to morphine: a possible role for cholecystokinin. Brain Res. 410: 52–60.PubMedGoogle Scholar
  81. 80.
    Dourish, C. T., O'Neill, M. F., Couglan, J., Kitchener, S. J., Hawley, D., and Iversen, S. D. 1990. The selective CCK-B antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in rat. Eur. J. Pharmacol. 175:35–44.Google Scholar
  82. 81.
    Xu, X. J., Wiesenfeld-Hallin, Z., Hughes, J., Horwell, D. C., and Hökfelt, T. 1992. CI 988, a selective antagonist of cholecyskinin-B receptors, prevents morphine tolerance in rats. Br. J. Pharmacol. 105:591–596.PubMedGoogle Scholar
  83. 82.
    Hoffmann, O., and Wiesenfeld-Hallin, Z. 1994. The CCK-B receptor antagonist CI 988 reverses tolerance to morphine in rats. NeuroReport 5:2565–2568.PubMedGoogle Scholar
  84. 83.
    Pournaghash, S., and Riley, A. 1991. Failure of cholecystokinin to precipitate withdrawal in morphine-treated rats. Pharmacol. Biochem. Behav. 38:479–484.PubMedGoogle Scholar
  85. 84.
    Maldonado, R., Valverde, O., Derrien, M., Tejedor-Real, P., and Roques, B. P. 1994. Effects induced by BC 264, a selective agonist of CCK-B receptors, on morphine-dependent rats. Pharmacol. Biochem. Behav. 48:363–369.PubMedGoogle Scholar
  86. 85.
    Bozarth, M. A., and Wise, R. A. 1984. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224:516–517.PubMedGoogle Scholar
  87. 86.
    Phillips, A. G., and Le Piane, F. G. 1982. Reward produced by microinjection of (D-Ala2), Met5-enkephalinamide into the ventral tegmental area. Behav. Brain Res. 5:225–229.PubMedGoogle Scholar
  88. 87.
    Bozarth, M. A. 1986. Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav. Brain Res. 22:107–116.PubMedGoogle Scholar
  89. 88.
    Cador, M., Taylor, J. R., and Robbins, T. W. 1991. Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens. Psychopharmacology 104:377–385.PubMedGoogle Scholar
  90. 89.
    Ladurelle, N., Keller, G., Roques, B. P., and Daugé, V. 1993. Effects of CCK8 and of the CCK-B selective agonist BC 264 on extracellular dopamine content in the anterior and posterior nucleus accumbens: a microdialysis study in freely moving rats. Brain Res. 628:254–262.PubMedGoogle Scholar
  91. 90.
    Higgins, G. A., Nguyen, P., and Sellers, E. M. 1991. Blockade of morphine conditioning by the CCK-A receptor antagonist devazepide. Eur. J. Pharmaco. 197:229–230.Google Scholar
  92. 91.
    Higgins, G. A., Nguyen, P., and Sellers, E. M. 1992. Morphine place conditioning is differentially affected by CCK-A and CCK-B receptor antagonssts. Brain Res. 572:208–215.PubMedGoogle Scholar
  93. 92.
    Glimcher, P. W., Giovino, A. A., Margolin, D. H., and Hoebel, B. G. 1984. Endogenous opiate reward induced by an enkephalinase inhibitors, thiorphan, injected into the ventral midbrain. Behav. Neurosci 98:262–268.PubMedGoogle Scholar
  94. 93.
    Agmo, A., Gomez, M., and Irazabal, Y. 1994. Enkephalinase inhibition facilitates sexual behavior in the male rat, but does not produce conditioned place preference. Pharmacol. Biochem. Behav. 47:771–778.PubMedGoogle Scholar
  95. 94.
    Noble, F., Fournié-Zaluski, M. C., and Roques, B. P. 1993. Unlike morphine, the endogenous enkephalins protected by RB 101 are unable to establish a conditioned place preference in mice. Eur. J. Pharmacol. 230:139–149.PubMedGoogle Scholar
  96. 95.
    Valverde, O., Fourié-Zaluski, M. C., Roques, B. P., and Maldonado, R. 1996. The CCK-B antagonist PD-134,308 facilitates rewarding effects of endogenous enkephalins but does not induce place preference in rats. Psychopharmacology 123:119–126.PubMedGoogle Scholar
  97. 96.
    Higgins, G. A., Joharchi, N., Wang, Y., Corrigall, W. A., and Sellers, E. M. 1994. The CCK-A receptor antagonist devazepide does not modify opioid self-administration or drug discrimination: comparison with the dopamine antagonist haloperidol. Brain Res. 640:246–254.PubMedGoogle Scholar
  98. 97.
    Bhargava, H. N. 1994. Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome, and self-administrative behavior. Pharmacol. Rev. 46:293–324.PubMedGoogle Scholar
  99. 98.
    Kreek, M. J., and Hartman, N. 1982 Chronic use of opioids and antipsychotic drugs: side effects, effects on endogenous opioids, and toxocity. Ann. N.Y. Acad. Sci. 398:151–172.PubMedGoogle Scholar
  100. 99.
    Hutcheson, D. M., Maldonado, R., Roques, B. P., Pache, D. M., and Sewell, R. D. E. 1995. Effects of the mixed inhibitor of enkephalin catabolism, RB 101 on naloxone-induced morphine withdrawal conditioned place aversion. Analgesia 1:477–480.Google Scholar
  101. 100.
    Waksman, G., Hamel, E., Fournié-Zaluski, M. C., and Roques, B. P. 1986. Autographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and of mu and delta opioid receptors in rat brain. Proc. Natl. Acad. Sci. USA 83: 1523–1527.PubMedGoogle Scholar
  102. 101.
    Laschka, E., Teschemacher, H., Mehrain, P., and Herz, A. 1976. Sites of action of morphine involved in the development of physical dependence in rats. Psychopharmacological (Berl.) 46:141–147.Google Scholar
  103. 102.
    Maldonado, R., Fournié-Zaluski, M. C., and Roques, B. P. 1992. Attenuation of the morphine withdrawal syndrome by inhibition of catabolism of endogenous enkephalins in the periaqueductal gray matter. Naunyn-Schmied. Arch. Pharmacol. 345:466–472.Google Scholar
  104. 103.
    Maldonado, R., Valverde, O., Ducos, B., Blommaert, A. G., Fournié-Zaluski, M. C., and Roques, B. P. 1995. Inhibition of morphine withdrawal by the association of RB 101, an inhibitor of enkephalin catabolism, and the CCK-B antagonist PD-134,308. Br. J. Pharmacol. 114:1031–1039.PubMedGoogle Scholar
  105. 104.
    Ruiz, F., Fournié-Zaluski, M. C., Roques, B. P., and Maldonado, R. 1996. The inhibitor of enkephalin catabolism, RB 101, induces a decrease, similar to methadone, in spontaneous morphine abstinence in rats. Br. J. Pharmacol. in press.Google Scholar
  106. 105.
    Le Moine, C., Normand, E., and Bloch, B. 1991. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc. Natl. Acad. Sci. USA. 88:4205–4209.PubMedGoogle Scholar
  107. 106.
    Roques, B. P., Daugé, V., Gacel, G., and Fournié-Zaluski, M. C. 1985. Selective agonists and antagonists of delta opioid receptors and inhibitors of enkephalin metabolism: potential use in treatment of mental illness. Pages 287–289,in Shagass, C., Josiassen, R. C., Bridger, H. W., Weiss, K. J., Stoff, D., and Simpson, G. M. (eds.), Biological Psychiatry, Developments in Psychiatry Vol. 7, Elsevier, New-York.Google Scholar
  108. 107.
    Ben Natan, L., Chaillet, P., Lecomte, J. M., Marçais, H., Uchida, G., and Costentin, J. 1984. Involvement of endogenous enkephalins in the mouse “behavioral despair” test. Eur. J. Pharmacol. 97:301–304.Google Scholar
  109. 108.
    Lecomte, J. M., Costentin, J., Vlaiculescu, A., Chaillet, P., Marçais-Collado, H., Llorens-Cortes, C., Leboyer, M., and Schwartz, J. C. 1986. Pharmacological properties of acetorphan, a parenterally active enkephalinase inhibitor. J. Pharmacol. Exp. Ther. 237:937–944.PubMedGoogle Scholar
  110. 109.
    Gibert-Rahola, J., Tejedor, P., Chover, A. J., Payana, M., Rodriguez, M. M., Leonsegui, I., Mellado, M., Mico, J. A., Maldonado, R., and Roques, B. P. 1990. RB 38B, a selective endopeptidase inhibitor, induced reversal of escape deficits cause by inescapable shocks pretreatment in rats. Eur. J. Pharmacol. 183:2317–2325.Google Scholar
  111. 110.
    Tejedor-Real, R., Mico, J. A., Maldonado, R., Roques, B. P., and Gibert-Rahola, J. 1993. Effect of a mixed (RB 38A) and selective (RB 38B) inhibitors of enkephalin-degrading enzymes on a model of depression in the rat. Biol. Psychiatry 34:100–107.PubMedGoogle Scholar
  112. 111.
    Baamonde, A., Daugé, V., Ruiz-Gayo, M., Fulga, I. G., Turcaud, S., Fournié-Zaluski, M. C., and Roques, B. P. 1991. Antidepressant-type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid δ and dopamine D1 receptor stimulation. Eur. J. Pharmacol. 216:157–166.Google Scholar
  113. 112.
    Smadja, C., Maldonado, R., Turcaud, S., Fournié-Zaluski, M. C., and Roques, B. P. 1995. Opposite role of CCK-A and CCK-B receptors in the modulation of endogenous enkephalin-antidepressant-like effects. Psychopharmacology 120:400–408.PubMedGoogle Scholar
  114. 113.
    Crawley, J. N. 1991. Cholecystokinin-dopamine interactions. Trends Pharmacol. Sci. 12:232–236.PubMedGoogle Scholar
  115. 114.
    Derrien, M., Durieux, C., Daugé, V., and Roques, B. P. 1993. Involvement of D2 dopaminergic receptors in the emotional and motivational response induced by injection of CCK8 in the posterior part of the nucleus accumbens. Brain Res. 617:181–188.PubMedGoogle Scholar
  116. 115.
    Derrien, M., Durieux, M., and Roques, B. P. 1994. Antidepressant-like effects of CCK-B antagonists in mice: antagonism by naltrindole. Br. J. Pharmacol. 111:956–960.PubMedGoogle Scholar
  117. 116.
    Hernando, F., Fuentes, J. A., Roques, B. P., and Ruiz-Gayo, M. 1994. The CCK-B receptor antagonist, L-365,260, elicits antidepressant-type effects in the forced-swim test in mice. Eur. J. Pharmacol. 261:257–263.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Bernard P. Roques
    • 1
  • Florence Noble
    • 1
  1. 1.Départemet de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS URA D 1500 Université René DescartesUFR des Sciences Pharmaceutiques et Biologiques 4Paris Cedex 06France

Personalised recommendations