Lipids

, Volume 10, Issue 9, pp 562–564 | Cite as

High levels of pancreatic nonspecific lipase in rattlesnake and leopard shark

  • John S. Patton
Short Communications

Abstract

Hydrolysis of synthetic triglycerides by rattlesnake and leopard shark pancreatic enzymes revealed striking differences in specificity, depending on the presence or absence of sodium taurocholate. Without added sodium taurocholate the classical specificity of pancreatic lipase was expressed. Rattlesnake enzymes, in the presence of sodium taurocholate, attacked the unsaturated oleic acid in the 2-position of racemic glycerol-1-palmitate-2-oleate-3-stearate nearly twice as fast as either outside saturated fatty acid. In this instance, over 90% of the monoglyceride which accumulated were 1-monoglyceride. These results are attributed to very high levels of bile salt activated nonspecific lipase. Eight vertebrate species were compared. With the exception of the rattlesnake and leopard shark, the other species (3 elasmobranchs and 3 mammals) all exhibited low levels of non-specific lipase, e.g. less than 5% hydrolysis of the 2-position of racemic glycerol-1-palmitate-2-oleate-3-stearate in the presence of sodium taurocholate.

Keywords

Lipase Bile Salt Monoglyceride Pancreatic Lipase Sodium Taurocholate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borgström, B., in “Intestinal Absorption. Biomembranes 4B,” Edited by D. H. Smyth, Plenum Press, New York, N. Y., 1974, p. 555.Google Scholar
  2. 2.
    Desnuelle, P., in “The Enzymes,” Edited by P. D. Boyer, Academic Press, New York, N. Y., 1972, p. 575.Google Scholar
  3. 3.
    Brockerhoff, H., and R. G. Jensen, “Lipolytic Enzymes,” Academic Press, New York, N. Y., 1974, p. 330.Google Scholar
  4. 4.
    Borgström, B., Acta Chem. Scand. 7:557 (1953).CrossRefGoogle Scholar
  5. 5.
    Desnuelle, P., Advan. Enzymol. 23:129 (1961).Google Scholar
  6. 6.
    Mattson, F. H., and R. A. Volpenhein, J. Lipid Res. 9:79 (1968).PubMedGoogle Scholar
  7. 7.
    Mattson, F. H., and R. A. Volpenheim, Ibid. 7:536 (1966).PubMedGoogle Scholar
  8. 8.
    Mattson, F. H., and R. A. Volpenheim, Ibid. 13:325 (1972).PubMedGoogle Scholar
  9. 9.
    Mattson, F. H., and R. A. Volpenhein, Ibid. 13:777 (1972).PubMedGoogle Scholar
  10. 10.
    Quinn, J. G., J. Sampugna, and R. G. Jensen, JAOCS. 44:549 (1967).Google Scholar
  11. 11.
    Korn, E. D., and T. W. Quigley, J. Biol. Chem. 226:833 (1957).PubMedGoogle Scholar
  12. 12.
    Patton, J. S., J. C. Nevenzel, and A. A. Benson, Lipids, (In press).Google Scholar
  13. 13.
    Brockerhoff, H., J. Fish. Res. Bd. Can. 212:92 (1966).Google Scholar
  14. 14.
    Thomas, A. E., III, J. E. Scharoun, and H. Ralston, JAOCS 42:783 (1965).Google Scholar
  15. 15.
    Patton, J. S., and J. G. Quinn, Mar. Biol. 21:59 (1973).CrossRefGoogle Scholar
  16. 16.
    Mattson, F. H., and R. A. Volpenhein, J. Lipid Res. 3:281 (1962).Google Scholar
  17. 17.
    Leger, C., and D. Bauchart, Acad. Sci. 275:2419 (1972).Google Scholar
  18. 18.
    Morgan, R. G. H., J. Barrowman, H. Filipek-Wender, and B. Borgström, Biochim. Biophys. Acta 167:355 (1968).PubMedGoogle Scholar
  19. 19.
    Hyun, J., H. Kothari, E. Herm, J. Mortenson, C. R. Treadwell, and G. V. Vahouny, J. Biol. Chem. 244:1937 (1969).PubMedGoogle Scholar
  20. 20.
    Bradshaw, W. S., and W. J. Rutter, Biochemistry 11:1517 (1972).PubMedCrossRefGoogle Scholar
  21. 21.
    Heimermann, W. H., R. T. Holman, D. T. Gordon, D. E. Kowalyshyn, and R. G. Jensen, Lipids 8:45 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1975

Authors and Affiliations

  • John S. Patton
    • 1
  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa Jolla

Personalised recommendations