Neurochemical Research

, Volume 21, Issue 8, pp 915–922 | Cite as

Influence of iron deficiency and lead treatment on behavior and cerebellar and hippocampal polyamine levels in neonatal rats

  • Vaqar M. Adhami
  • Raghib Husain
  • Raushan Husain
  • P. K. Seth
Original Articles

Abstract

Effect of lead exposure and iron-deficiency on polyamine levels in neuronal and glial cells of cerebellum and hippocampus was investigated in weaned rats. Lactating dams with one day old litters were given 0.2% (w/v) lead acetate in drinking water from postnatal day one to twenty one and maintained on an iron-deficient diet. There was an overall reduction of putrescine, spermidine and spermine in neuronal and glial cells of cerebellum and hippocampus consequent to lead exposure and iron-deficiency alone. Lead exposure and iron-deficiency together did not potentiate the polyamine levels in neuronal and glial cells of cerebellum and hippocampus uniformly. However, the enhanced lowering of putrescine in the hippocampal glia, spermidine in cerebellar neuronal and spermine in both neuronal and glial cells of cerebellum during the critical stage of brain development may result in stunted neuronal growth and sprouting in lead exposed and iron-deficient animals. The behavioral alterations as observed in the present study may be due to impaired neuronal development resulting from a depressed polyamine pathway and which could be attributed to cognitive deficits in growing children.

Key Words

Iron-deficiency lead polyamines neuronal glial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kater, S. B., Mattsor, M. P., Cohan, C., and Connor, J. 1988. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11:315–321.PubMedCrossRefGoogle Scholar
  2. 2.
    Legare, M. E., Castiglioni, A. J., Rowles, T. K., Calvin, J. A., Snydr-Armstead, C., and Tiffany Castiglioni, E. 1993. Morphological alterations of neurons and astrocytes in guinea pigs exposed to low levels of inorganic lead. Neurotoxicol. 14:77–80.Google Scholar
  3. 3.
    Goldstein, G. W. 1990. Lead poisoning and brain cell function. Env. Hlth. Perspectives 89:91–94.Google Scholar
  4. 4.
    Pounds, J. G., and Cory-slechta, D. A. 1993. New dimensions of lead neurotoxicity: redefining mechanisms and effects. Neurotoxicol. 14:4–6.Google Scholar
  5. 5.
    Yehuda, S., and Youdim, M. B. H. 1989. Brain iron: a lesson from animal models. Am. J. Clin. Nutr. 56(Suppl.):618–625.Google Scholar
  6. 6.
    Shaw, G. G., and Pateman, J. J. 1973. The regional distribution of polyamines, spermindine and spermine in brain. J. Neurochem. 20:1225–1230.PubMedCrossRefGoogle Scholar
  7. 7.
    Shaw, G. G. 1979. The polyamines in the central nervous system. Biochem. Pharmacol. 28:1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Tabor, H., and Tabor, C. W. 1984. Polyamines. Ann. Rev. Biochem. 53:749–790.PubMedCrossRefGoogle Scholar
  9. 9.
    Scott, R. H., Sutton, K. G., and Dolphin, A. C. 1993. Interactions of polyamines with neuronal ion channels. Trends Neurosci. 16: 153–160.PubMedCrossRefGoogle Scholar
  10. 10.
    Anand, R., Gore, M. G., and Kerkut, G. A. 1976. The effect of spermine and spermidine on the hydrolysis of acetylthiocholine in the presence of rat caudate nucleus homogenate on acetyl cholinesterase fromElectrophorous electricus. J. Neurochem. 27:381–385.PubMedGoogle Scholar
  11. 11.
    Iqbal, Z., and Koenig, H. 1985. Polyamines appear to be second messengers in the mediating Ca2+ fluxes and neurotransmitter release in potassium depolarized synaptosomes. Biochem. Biophys. Res. Commun. 133:563–573.PubMedCrossRefGoogle Scholar
  12. 12.
    Lopatkin, A. N., Makhina, E. N., and Nichols, C. G. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369.CrossRefGoogle Scholar
  13. 13.
    Bell, J. M., and Slotkin, T. A. 1986. Polyamines as intermediates in developmental neurotoxic events. Neurotoxicol. 7:147–160.Google Scholar
  14. 14.
    Gilad, G. M., Dornay, M., and Gilad, V. H., 1989. Polyamines induce precocious development in rats. Possible interaction with growth factors. Int. J. Dev. Neurosci. 7:641–653.PubMedCrossRefGoogle Scholar
  15. 15.
    Zawia, N. H., Evers, L. B. and Harry, G. J. 1994. Developmental profiles of ornithine decarboxylase activity in the hippocampus, neocortex and cerebellum: modulation following lead exposure. Int. J. Dev. Neuroscience 12:25–30.CrossRefGoogle Scholar
  16. 16.
    Miller, G. D., Massaro, T. F., and Massaro, J. E. 1990. Interaction between lead and essential elements: a review. Neurotoxicol. 11: 99–120.Google Scholar
  17. 17.
    Ragan, H. A. 1977. Effects of iron-deficiency on the absorption of lead and cadmium in rats. J. Lab. Clin. Med. 90:700–706.PubMedGoogle Scholar
  18. 18.
    Crosby, W. H., and Houchin, D. N. 1957. Preparing a standard solution of cyanmethhaemoglobin. Blood 12:1132–1136.PubMedGoogle Scholar
  19. 19.
    Vorhees, C. V., Butcher, R. E., Brunner, R. L., and Sobokta, T. J. 1979. A developmental test battery for neurobehavioral toxicity in rats: a preliminary analysis using monosodium glutamate, calcium carageenan and hydroxyurea. Toxicol. Appl. Pharmacol. 50: 267–282.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhn, W. L., and Van Mannen 1961. Central nervous system effects of thalidomide. J. Pharmacol. Exp. Ther. 134:60–68.PubMedGoogle Scholar
  21. 21.
    Glowinski, J., and Iversen, L. L. 1966. Regional studies of the catecholamines in the rat brain. J. Neurochemistry 13:655–669.CrossRefGoogle Scholar
  22. 22.
    Hamberger, A., Eriksson, O., and Norby, K. 1971. Cell size distribution in brain suspensions and in fractions enriched with neuronal and glial cells. Exp. Cell Res. 67:380–388.PubMedCrossRefGoogle Scholar
  23. 23.
    Seiler, N., and Lamberty, V. 1975. Interaction between polyamines and nucleic acids: changes of polyamines and nucleic acids in developing rat brain. J. Neurochem. 24:1–16.Google Scholar
  24. 24.
    Husain, R., Malaviya, M., Seth, P. K., and Husain, R. 1994. Effect of deltamethrin on regional brain polyamines and behavior in young rats. Pharmacol. Toxicol. 74(4–5):211–215.PubMedCrossRefGoogle Scholar
  25. 25.
    Zar, H. J. 1984. Multifactorial analysis of variance. Pages 244–251, in Zar, H. J. (ed.), Biostatistical Analysis, Prentice Hall, New Jersey.Google Scholar
  26. 26.
    Cookman, G. R., King, W., and Regan, C. W. 1987. Chronic low level lead exposure impairs embryonic to adult conversion of neural cell adhesion molecule. J. Neurochem. 49:399–403.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferchmin, P. A., and Eteronic, V. A. 1987. Role of polyamines in experence dependent brain plasticity. Pharmacol. Biochem. Behavior 26:341–349.CrossRefGoogle Scholar
  28. 28.
    Husain, R., Malaviya, M., Seth, P. K., and Husain, R. 1992. Differential responses of regional brain polyamines following in vitro exposure to synthetic pyrethroid insecticides. A preliminary report. Bull. Environ. Contam. Toxicol. 49:402–409.PubMedCrossRefGoogle Scholar
  29. 29.
    Youdim, M. B. H. 1990. Developmental, neuropharmacological and biochemical aspects of iron-deficiency. Pages 83–133,in Dobbing, J. (ed.), Brain, Behavior and Iron-deficiency, Springer, New York.Google Scholar
  30. 30.
    Youdim, M. B. H., Ben-Shachar, D., and Riederer, P. 1989. Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol. Scand. 26:47–54.Google Scholar
  31. 31.
    Youdim, M. B. H., Ben-Shachar, D., and Yehuda, S. 1989. Putative biological mechanisms of the effect of iron-deficiency on brain biochemistry and behavior. Am. J. Clin. Nutr. 50:607–616.PubMedGoogle Scholar
  32. 32.
    Shukla, A., Agarwal, K. N., and Shukla, G. S. 1989. Effect of latent iron-deficiency on metal levels of rat brain regions. Biol. Trace Elem. Res. 22:141–152.PubMedCrossRefGoogle Scholar
  33. 33.
    Williams, R. B., and Mills, C. F. (1970). The experimental production of zinc deficiency in rats. Brt. J. Nutr. 24:989–1003.CrossRefGoogle Scholar
  34. 34.
    Hubbel, R. B., Mendel, K. B., and Wakeman, A. J. 1937. A new salt mixture for use in experimental diets. J. Nutr. 14:273–285.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Vaqar M. Adhami
    • 1
  • Raghib Husain
    • 1
  • Raushan Husain
    • 1
  • P. K. Seth
    • 1
  1. 1.Developmental Toxicology DivisionIndustrial Toxicology Research CentreLucknowIndia

Personalised recommendations