Neurochemical Research

, Volume 21, Issue 8, pp 889–895 | Cite as

Nigericin-induced Na+/H+ and K+/H+ exchange in synaptosomes: Effect on [3H]GABA release

  • Ricardo Rodríguez
  • María Sitges
Original Articles


The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.

Key Words

Nigericin Na+/H+ ionophore K+/H+ ionophore GABA release synaptosomes cytosolic Na+ cytosolic pH cytosolic Ca2+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pressman, B. C. 1976. Biological applications of ionophores. Ann. Rev. Biochem. 45:501–530.PubMedCrossRefGoogle Scholar
  2. 2.
    Sitges, M., Possani, L. D., and Bayón, A. 1986. Noxiustoxin, a short-chain toxin from the mexican scorpion Centruroides noxius, induces transmitter release by blocking K+ permeability J. Neurosci. 6:1570–1574.PubMedGoogle Scholar
  3. 3.
    Sitges, M. 1989. Characterization of the effect of monensin on σ-amino-n-butyric acid release from isolated nerve terminals. J. Neurochem. 53:442–447.PubMedCrossRefGoogle Scholar
  4. 4.
    Satoh, E., and Nakazato, Y. 1991. Effects of monensin and veratridine on acetylcholine release and cytosolic free Ca2+ levels in cerebrocortical synaptosomes of rats. J. Neurochem. 57:1270–1275.PubMedCrossRefGoogle Scholar
  5. 5.
    Moulian, N., Gaudry-Talarmain, Y.M., and Israel, M. 1994. Spontaneous release of acetylcholine from Torpedo synaptosomes: Effect of cetiedil and its analogue MR16728. J. Neurochem. 62:113–118.PubMedCrossRefGoogle Scholar
  6. 6.
    Bode, H. P., Eder, B., and Trautmann, M. 1994. An investigation on the role of vacuolar-type proton pumps and luminal acidity in calcium sequestration by nonmitochondrial and inositol-1,4,5-triphosphate-sensitive intracellular calcium stores in clonal insulin-secreting cells. Eur. J. Biochem. 222:869–877.PubMedCrossRefGoogle Scholar
  7. 7.
    Harada, H., Morita, M., and Suketa, Y. 1994. K+ ionophores inhibit nerve growth factor-induced neuronal differentiation in rat adrenal pheochromocytoma PC12 cells. Biochim. Biophys. Acta 1220:310–314.PubMedCrossRefGoogle Scholar
  8. 8.
    Vääräniemi, J., Huotari, V., Lehto, V. P., and Eskelinen, S. 1994. The effects of PMA and TFP and alterations in intracellular pH and calcium concentration on the membrane associations of phospholipid-binding proteins fodrin, protein kinase C and annexin II in cultured MDCK cells. Biochim. Biophys. Acta 1189:21–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Perregaux, D., and Gabel, C. A. 1994. Interleukin-1β maturation and release in response to ATP and nigericin. J. Biol. Chem. 269: 15195–15203.PubMedGoogle Scholar
  10. 10.
    Erecinska, M., Nelson, D., Dagani, F., Deas, J., and Silver, I. A. 1993. Relations between intracellular ions and energy metabolism under acidotic conditions: A study with nigericin in synaptosomes, neurons and C6 glioma cells. J. Neurochem. 61:1356–1368.PubMedGoogle Scholar
  11. 11.
    Levi, G. 1984. Release of putative transmitter aminoacids. Pages 463–509,in Lajtha, A. (ed.), Handbook of Neurochemistry. Plenum Press, New York.Google Scholar
  12. 12.
    Sihra, T. S., and Nicholls, D. G. 1987. 4-Aminobutyrate can be released exocytotically from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49:261–267.PubMedCrossRefGoogle Scholar
  13. 13.
    Sitges, M. 1989. Effect of organic and inorganic calcium channel blockers on σ-amino-n-butyric acid release induced by monensin and veratrine in the absence of external calcium. J. Neurochem. 53:436–441.PubMedCrossRefGoogle Scholar
  14. 14.
    Nicholls, D. G. 1989. Release of glutamate, aspartate, and gammaaminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.PubMedCrossRefGoogle Scholar
  15. 15.
    Bernath, S. 1992. Calcium-independent release of amino acid neurotransmitters: fact or artifact? Progress in Neurobiology 38:57–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Meyer, D. K. 1991. Nonexocytotic release of gamma-aminobutyric acid: Implications for volume transmission. Pages 433–440,in Fuxe, K. and Agnati, L. F. (eds.), Volume transmission in the brain. Raven Press, New York.Google Scholar
  17. 17.
    Sitges, M., Chiu, L. M., and González, L. 1993. Vesicular and carrier-mediated depolarization-induced release of3-GABA: Inhibition by verapamil and amiloride. Neurochem. Res. 18:1081–1087.PubMedCrossRefGoogle Scholar
  18. 18.
    Reed, P. W. 1979. Ionophores. Methods Enzymol. 55:435–454.PubMedCrossRefGoogle Scholar
  19. 19.
    Erecinska, M., Dagani, F., Nelson, D., Deas, J., and Silver, I. A. 1991. Relations between intracellular ions and energy metabolism: A study with monensin in synaptosomes, neurons and C6 glioma cells. J. Neurosci. 11:2410–2421.PubMedGoogle Scholar
  20. 20.
    Hajós, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 136:387–392.Google Scholar
  21. 21.
    Sitges, M., and Chiu, L. M. 1995. w-Aga IVA selectively inhibits the calcium dependent fraction of the evoked release of [3H]GABA from synaptosomes. Neurochem. Res. 20:1065–1071.PubMedCrossRefGoogle Scholar
  22. 22.
    Minta, A., and Tsien, R. Y. 1989. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264:19449–19457.PubMedGoogle Scholar
  23. 23.
    Harootunian, A. T., Kao, J. P. Y., Eckert, B. K., and Tsien, R. Y. 1989. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J. Biol. Chem. 264:19458–19467.PubMedGoogle Scholar
  24. 24.
    Sánchez-Armass, S., Martínez-Zaguillán, R., Martínez, G. M., and Gillies, R. 1994. Regulation of pH in rat brain synaptosomes. I. Role of sodium, bicarbonate, and potassium. J. Neurophysiol. 71: 2236–2248.PubMedGoogle Scholar
  25. 25.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  26. 26.
    Deri, Z., and Adam-Vizi, V. 1993. Detection of intracellular free Na+ concentration of synaptosomes by a fluorescent indicator, Na+-binding benzofuran isophthalate: The effect of veratridine, ouabain, and α-latrotoxin. J. Neurochem. 61:818–825.PubMedCrossRefGoogle Scholar
  27. 27.
    Nachshen, D. A., and Drapeau, P. 1989. The regulation of cytosolic pH in isolated presynaptic nerve terminals from rat brain. J. Gen. Physiol. 91:289–303.CrossRefGoogle Scholar
  28. 28.
    Jean, T., Frelin, C., Vigne, P., Barbry, P., and Lazdunski, M. 1985. Biochemical properties of the Na+/H+ exchange system in rat brain synaptosomes. J. Biol. Chem. 260:9678–9684.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Depto. de Biología Celular, Instituto de Investigaciones BiomédicasUNAMMéxico

Personalised recommendations