Skip to main content
Log in

EGF-Induced sustained tyrosine phosphorylation and decreased rate of down-regulation of EGF receptor in PC12h-R cells which show neuronal differentiation in response to EGF

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thoenen, H., and Barde, Y.-A. 1980. Physiology of nerve growth factor. Physiol. Rev. 60:1284–1335.

    PubMed  CAS  Google Scholar 

  2. Hartikka, J., and Hefti, F. 1988. Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth and expression of transmitterspecific enzymes. J. Neurosci. 8:2967–2985.

    PubMed  CAS  Google Scholar 

  3. Hatanaka, H., Tsukui, H., and Nihonmatsu, I. 1988. Developmental change in the nerve growth factor action from induction of choline acetyltransferase to promotion of cell survival in cultured basal forebrain cholinergic neurons from postnatal rats. Dev. Brain Res. 39:85–95.

    Article  CAS  Google Scholar 

  4. Abiru, Y., Nishio, C., and Hatanaka, H. The survival of striatal cholinergic neurons cultured from postnatal 2-week-old rats is promoted by neurotrophins. Dev. Brain Res. in press.

  5. Hefti, F., Denton, T. L., Knüsel, B., and Lapchak, P. A. 1993. Neurotrophic factors: what are they and what are they doing? Pages 25–49,in Loughlin, S. E., and Fallon, J. H. (eds.), Neurotrophic factors, Academic Press, Inc., San Diego, California.

    Google Scholar 

  6. Carpenter, G. J., and Cohen, S. 1979. Epidermal growth factor. Annu. Rev. Biochem. 48:193–216.

    Article  PubMed  CAS  Google Scholar 

  7. Morrison, R. S., Kornblum, H. I., Leslie, F. M., and Bradshaw, R. A. 1987. Trophic stimulation of cultured neurons from neonatal rat brain by EGF. Science 238:72–75.

    Article  PubMed  CAS  Google Scholar 

  8. Kornblum, H. I., Raymon, H. K., Morrison, R. S., Cavanaugh, K. P., Bradshaw, R. A., and Leslie, F. M. 1990. Epidermal growth factor and basic fibroblast growth factor: effects on an overlapping population of neocortical neurons in vitro. Brain Res. 535:255–263.

    Article  PubMed  CAS  Google Scholar 

  9. Morrison, R. S., Keating, R. F., and Moskal, J. R. 1988. Basic fibroblast growth factor and epidermal growth factor exert differential trophic effects on CNS neurons. J. Neurosci. Res. 21:71–79.

    Article  PubMed  CAS  Google Scholar 

  10. Greene, L. A., and Tischler, A. S. 1976. Establishment of noradrenergic clonal cell line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 72:2424–2428.

    Article  Google Scholar 

  11. Halegoua, S., Armstrong, R. C., and Kremer, N. E. 1991. Dissecting the mode of action of neuronal growth factor. Curr. Top. Microbiol. Immunol. 165:119–170.

    PubMed  CAS  Google Scholar 

  12. Huff, K., End, D., and Guroff, G. 1981. Nerve growth factor-induced alteration in the response of PC12 pheochromocytoma cells to epidermal growth factor. J. Cell. Biol. 88:189–198.

    Article  PubMed  CAS  Google Scholar 

  13. Barbacid, M. 1993. Nerve growth factor: a tale of two receptors. Oncogene 8:2033–2042.

    PubMed  CAS  Google Scholar 

  14. Carpenter, G. 1987. Receptor for epidermal growth factor and other polypeptide mitogens. Ann. Rev. Biochem. 56:881–914.

    Article  PubMed  CAS  Google Scholar 

  15. Schlessinger, J., and Ullrich, A. 1992. Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, U.-H., Fink, D., Kim, H. S., Park, D. J., Contreras, M. L., Guroff, G., and Rhee, S. G. 1991. Nerve growth factor stimulates phosphorylation of phospholipase C-γ in PC12 cells. J. Biol. Chem. 266:1359–1362.

    PubMed  CAS  Google Scholar 

  17. Vetter, M. L., Martin-Zanca, D., Parada, L. F., Bishop, J. M., and Kaplan, D. R. 1991. NGF rapidly stimulates tyrosine phosphorylation of phospholipase C-γ 1 by a kinase activity associated with the product of thetrk proto-oncogene. Proc. Natl. Acad. Sci. USA 88:5650–5654.

    Article  PubMed  CAS  Google Scholar 

  18. Ohmichi, M., Decker, S. J., and Saltiel, A. R. 1992. Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect couplings of thetrk proto-oncogene with src homology 2 domains. Neuron 9:769–777.

    Article  PubMed  CAS  Google Scholar 

  19. Soltoff, S., Rabin, S. J., Cantley, L., and Kaplan, D. R. 1992. Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with thetrk tyrosine kinase. J. Biol. Chem. 267:17472–17477.

    PubMed  CAS  Google Scholar 

  20. Schlessinger, J. 1993. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18:273–275.

    Article  PubMed  CAS  Google Scholar 

  21. Blenis, J. 1993. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA 90:5889–5892.

    Article  PubMed  CAS  Google Scholar 

  22. Nishida, E., and Gotoh, Y. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18:128–131.

    Article  PubMed  CAS  Google Scholar 

  23. Chao, M. V. 1992. Growth factor signalling: where is the specificity? Cell 68:995–997.

    Article  PubMed  CAS  Google Scholar 

  24. Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.

    Article  PubMed  CAS  Google Scholar 

  25. Qiu, M.-S., and Green, S. H. 1992. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9:705–717.

    Article  CAS  Google Scholar 

  26. Traverse, S., Gomez, N., Paterson, H., Marshall, C., and Cohen, P. 1992. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Biochem. J. 288:351–355.

    PubMed  CAS  Google Scholar 

  27. Guerrero, I., Pellicer, A., and Burstein, D. E. 1986. Dissociation of c-fos from ODC expression and neuronal differentiation in a PC12 subline stably transfected with an inducible N-ras oncogene. Biochem. Biophys. Res. Commun. 150:1185–1192.

    Article  Google Scholar 

  28. Wood, K. W., Qi, H., D'Arcangelo, G., Armstrong, R. C., Roberts, T. M., and Halegoua, S. 1993. The cytoplasmicraf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc. Natl. Acad. Sci. USA 90:5016–5020.

    Article  PubMed  CAS  Google Scholar 

  29. Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.

    Article  PubMed  CAS  Google Scholar 

  30. Ikenaka, K., Nakahira, K., Takayama, C., Wada, K., Hatanaka, H., and Mikoshiba, K. 1990. Nerve growth factor rapidly induced expression of the 68 KDa neurofilament gene by posttranscriptional modulation in PC12h-R cells. J. Biol. Chem. 265:19782–19785.

    PubMed  CAS  Google Scholar 

  31. Yamada, M., Ikeuchi, T., Tsukui, H., Aimoto, S., and Hatanaka, H. 1994. Sustained tyrosine phosphorylation of p140trkA in PC12h-R cells responding rapidly to NGF. Brain Res. 661:137–146.

    Article  PubMed  CAS  Google Scholar 

  32. Hatanaka, H. 1981. Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line. Brain Res. 222:225–233.

    Article  PubMed  CAS  Google Scholar 

  33. Yamada, M., Ikeuchi, T., Aimoto S., and Hatanaka, H. PC12h-R cell, a subclone of PC12 cells, shows EGF-induced neuronal differentiation and sustained signaling. J. Neurosci. Res. in press.

  34. Hatanaka, H. 1983. Nerve growth factor-mediated differentiation of a nerve cell line cultured in a hormone-supplemented serum-free medium. Dev. Brain Res. 6:243–250.

    Article  CAS  Google Scholar 

  35. Harlow, E., and Lane, D. 1988. Antibodies-a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, Pages 78–81.

    Google Scholar 

  36. Bocchini, V., and Angeletti, P. U. 1969. The nerve growth factor: Purification as a 30,000-molecular weight protein. Proc. Natl. Acad. Sci. USA 64:787–794.

    Article  PubMed  CAS  Google Scholar 

  37. Suda, K., Barde, Y.-A., and Thoenen, H. 1978. Nerve growth factor in mouse and rat serum: Correlation between bioassay and radioimmunoassay determinations. Proc. Natl. Acad. Sci. USA 75: 4042–4046.

    Article  PubMed  CAS  Google Scholar 

  38. Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Article  PubMed  CAS  Google Scholar 

  39. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  40. Greene, L. A., and Shooter, E. M. 1980. The nerve growth factor: biochemistry, synthesis and mechanism of action. Ann. Rev. Neurosci. 3:353–402.

    Article  PubMed  CAS  Google Scholar 

  41. Greene, L. A., and Rukenstein, A. 1981. Regulation of acetylcholinesterase activity by nerve growth factor. J. Biol. Chem. 256: 6363–6367.

    PubMed  CAS  Google Scholar 

  42. Knüsel, B., and Hefti, F. 1992. K-252 compounds: modulators of neurotrophin signal transduction. J. Neurochem. 59:1987–1996.

    Article  PubMed  Google Scholar 

  43. Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. 1988. K-252a: a specific inhibitor of the action of nerve growth factor on PC12 cells. J. Neurosci. 8:715–721.

    PubMed  CAS  Google Scholar 

  44. Derynck, R. 1988. Transforming growth factor α. Cell 54:593–595.

    Article  PubMed  CAS  Google Scholar 

  45. Soderquist, A. M., and Carpenter, G. 1986. Biosynthesis and metabolic degradation of receptors for epidermal growth factor. J. Memb. Biol. 90:97–105.

    Article  CAS  Google Scholar 

  46. Isono, F., Widmer, H. R., Hefti, F., and Knüsel, B. 1994. Epidermal growth factor induces PC12 cell differentiation in the presence of the protein kinase inhibitor K-252a. J. Neurochem. 63: 1235–1245.

    Article  PubMed  CAS  Google Scholar 

  47. Yamada, M., Enokido, Y., Ikeuchi, T., and Hatanaka, H. 1995. Epidermal growth factor prevents oxygen-triggered apoptosis and induces sustained signaling in cultured rat cerebral cortical neurons. Eur. J. Neurosci. 7:2130–2138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hatanaka.

Additional information

Special issue dedicated to Dr. Hans Thoenen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, M., Ikeuchi, T., Aimoto, S. et al. EGF-Induced sustained tyrosine phosphorylation and decreased rate of down-regulation of EGF receptor in PC12h-R cells which show neuronal differentiation in response to EGF. Neurochem Res 21, 815–822 (1996). https://doi.org/10.1007/BF02532305

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532305

Key Words

Navigation