Neurochemical Research

, Volume 21, Issue 7, pp 749–753 | Cite as

Paracrine and autocrine actions of neurotrophic factors

  • Alun M. Davies
Original Articles


Neurotrophic factors are proteins that promote the survival and growth of neurons in the vertebrate nervous system. Although it is well known that many neurons obtain these factors from the regions to which their axons project, studies of the sites of neurotrophic factor synthesis have raised the possibility that at least some neurons may obtain these factors from other sources. Alternative sources of neurotrophic factors include cells along a neuron's axon shaft and cells or other axons terminals within the vicinity of a neuron's cell body and dendritic arbour. In addition, recent experimental studies have shown that at certain stages of development neurotrophic factor autocrine loops operate in some neurons. The evidence for and the potential physiological significance of these different modes of action of neurotrophic factors will be discussed.

Key words

Neurotrophic factors neurotrophins cell survival autocrine loops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oppenheim, R. W. 1991. Cell death during development of the nervous system. Ann. Rev. Neurosci. 14:453–501.PubMedCrossRefGoogle Scholar
  2. 2.
    Purves, D., Snider, W. D., and Voyvodic, J. T. 1988. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336:123–128.PubMedCrossRefGoogle Scholar
  3. 3.
    Thoenen, H., and Barde, Y. 1980. Physiology of nerve growth factor. Physiol. Rev. 60:1284–1335.PubMedGoogle Scholar
  4. 4.
    Davies, A. M. 1988. Role of neurotrophic factors in development. Trends Genet 4:139–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Barde, Y. A. 1989. Trophic factors and neuronal survival. Neuron 2:1525–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Levi-Montalcini, R., and Angeletti, P. 1968. Nerve growth factor. Physiol Rev. 48:534–569.PubMedGoogle Scholar
  7. 7.
    Johnson, E. M., Gorin, P. D., Brandeis, L. D., and Pearson, J. 1980. Dorsal root ganglion neurons are destroyed by in utero exposure to maternal antibody to nerve growth factor. Science 210: 916–918.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamburger, V., and Yip, J. W. 1984. Reduction of experimentally induced neuronal death in spinal ganglia of the chick embryo by nerve growth factor. J Neurosci 4:767–74.PubMedGoogle Scholar
  9. 9.
    Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts, M. S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D. L., Levinson, A. D., and Phillips, H. S. 1994. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011.PubMedCrossRefGoogle Scholar
  10. 10.
    Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A., and Barbacid, M. 1994. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249.PubMedCrossRefGoogle Scholar
  11. 11.
    Davies, A. M., Bandtlow, C., Heumann, R., Korsching, S., Rohrer, H., and Thoenen, H. 1987. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326:353–358.PubMedCrossRefGoogle Scholar
  12. 12.
    Korsching, S., and Thoenen, H. 1988. Developmental changes of nerve growth factor levels in sympathetic ganglia and their target organs. Devel. Biol. 126:40–46.CrossRefGoogle Scholar
  13. 13.
    Harper, S., and Davies, A. M. 1990. NGF mRNA expression in developing cutaneous epithelium related to innervation density. Development 110:515–519.PubMedGoogle Scholar
  14. 14.
    Hendry, I. A., Stoeckel, K., Thoenen, H., and Iversen, L. L. 1974. Retrograde transport of nerve growth factor. Brain Res. 68:103–121.PubMedCrossRefGoogle Scholar
  15. 15.
    Korsching, S., and Thoenen, H. 1983. Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci Lett 39:1–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Gnahn, H., Hefti, F., Heumann, R., Schwab, M. E., and Thoenen, H. 1983. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain?. Brain Res, 285:45–52.PubMedGoogle Scholar
  17. 17.
    Ayer-LeLievre, C., Olson, L., Ebendal, T., Seiger, A., and Persson, H. 1988. Expression of the beta-nerve growth factor gene in hippocampal neurons. Science 240:1339–1341.PubMedCrossRefGoogle Scholar
  18. 18.
    Whittemore, S. R., Friedman, P. L., Larhammar, D., Persson, H., Gonzalez, C. M., and Holets, V. R. 1988. Rat beta-nerve growth factor sequence and site of synthesis in the adult hippocampus. J. Neurosci. Res. 20:403–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwab, M., Otten, U., Agid, Y., and Thoenen, H. 1979. Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168:473–482.PubMedCrossRefGoogle Scholar
  20. 20.
    Korsching, S., Heumann, R., Thoenen, H., and Hefti, F. 1986. Cholinergic denervation of the rat hippocampus by fimbrial transection leads to a transient accumulation of nerve growth factor (NGF) without change in mRNANGF content. Neurosci. Lett. 66: 175–180.PubMedCrossRefGoogle Scholar
  21. 21.
    Hefti, F. 1986. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6: 2155–2162.PubMedGoogle Scholar
  22. 22.
    Barde, Y. A., Edgar, D., and Thoenen, H. 1982. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1:549–553.PubMedGoogle Scholar
  23. 23.
    Hofer, M. M., and Barde, Y. A. 1988. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331:261–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Ernfors, P., Lee, K. F., and Jaenisch, R. 1994. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones, K. R., Farinas, I., Backus, C., and Reichardt, L. F. 1994. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–99.PubMedCrossRefGoogle Scholar
  26. 26.
    Klein, R., Smeyne, R. J., Wurst, W., Long, L. K., Auerbach, B. A., Joyner, A. L., and Barbacid, M. 1993. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75:113–122.PubMedGoogle Scholar
  27. 27.
    Klein, R., Silos, S. I., Smeyne, R. J., Lira, S. A., Brambilla, R., Bryant, S., Zhang, L., Snider, W. D., and Barbacid, M. 1994. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368: 249–251.PubMedCrossRefGoogle Scholar
  28. 28.
    Ernfors, P., Lee, K. F., Kucera, J., and Jaenisch, R. 1994. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512.PubMedCrossRefGoogle Scholar
  29. 29.
    Ernfors, P., Van Der Water, T., Loring, J., and Jaenisch, R. 1995. Complementary roles of BDNF and NT3 in vestibular and auditory development. Neuron 14:1153–1164.PubMedCrossRefGoogle Scholar
  30. 30.
    Conover, J. C., Erickson, J. T., Katz, D. M., Bianchi, L. M., Poueymirou, W. T., McClain, J., Pan, L., Helgren, M., Ip, N. Y., Boland, P., Friedman, B., Wiegand, S., Vejsada, R., Kato, A. C., DeClara, T. M., and Yancopoulas, G. D. 1995. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and NT4. Nature 375:235–238.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu, X., Ernfors, P., Wu, H., and Jaenisch, R. 1995. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375:238–241.PubMedCrossRefGoogle Scholar
  32. 32.
    Heumann, R., Korsching, S., Scott, J., and Thoenen, H. 1984. Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. Embo J 3:3183–9.PubMedGoogle Scholar
  33. 33.
    Shelton, D. L., and Reichardt, L. F. 1984. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc. Natl. Acad. Sci. USA 81:7951–7915.PubMedCrossRefGoogle Scholar
  34. 34.
    Korsching, S., and Thoenen, H. 1983. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc. Natl. Acad. Sci. USA 80:3513–3516.PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards, R. H., Rutter, W. J., and Hanahan, D. 1989. Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58:161–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Albers, K. M., Wright, D. E., and Davis, B. M. 1994. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci.Google Scholar
  37. 37.
    Barbin, G., Manthorpe, M., and Varon, S. 1984. Purification of the chick eye ciliary neuronotrophic factor. J Neurochem 43: 1468–78.PubMedCrossRefGoogle Scholar
  38. 38.
    Arakawa, Y., Sendtner, M., and Thoenen, H. 1990. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 10:3507–15.PubMedGoogle Scholar
  39. 39.
    Stockli, K. A., Lillien, L. E., Naher, N. M., Breitfeld, G., Hughes, R. A., Raff, M. C., Thoenen, H., and Sendtner, M. 1991. Regional distribution, developmental changes, and cellular localization of CNTF-MRNA and protein in the rat brain. J. Cell Biol. 115:447–459.PubMedCrossRefGoogle Scholar
  40. 40.
    Dobrea, G. M., Unnerstall, J. R., and Rao, M. S. 1992. The expression of CNTF message and immunoreactivity in the central and peripheral nervous system of the rat. Devel. Brain Res. 66: 209–219.CrossRefGoogle Scholar
  41. 41.
    Lin, L. F., Mismer, D., Lile, J. D., Armes, L. G., Butler, E. 3., Vannice, J. L., and Collins, F. 1989. Purification, cloning, and expression of ciliary neurotrophic factor (CNTF). Science 246: 1023–1025.PubMedCrossRefGoogle Scholar
  42. 42.
    Masu, Y., Wolf, E., Holtmann, B., Sendtner, M., Brem, G., and Thoenen, H. 1993. Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:27–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Heumann, R., Lindholm, D., Bandtlow, C., Meyer, M., Radeke, M. J., Misko, T. P., Shooter, E., and Thoenen, H. 1987. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84:8735–8739.PubMedCrossRefGoogle Scholar
  44. 44.
    Meyer, M., Matsuoka, I., Wetmore, C., Olson, L., and Thoenen, H. 1992. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol. 119:45–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Funakoshi, H., Frisen, J., Barbany, G., Timmusk, T., Zachrisson, O., Verge, V. M., and Persson, H. 1993. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J. Cell Biol. 123:455–465.PubMedCrossRefGoogle Scholar
  46. 46.
    Lindsay, R. M. 1988. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci. 8:2394–2405.PubMedGoogle Scholar
  47. 47.
    Yip, H. K., Rich, K. M., Lampe, P. A., and Johnson, E. M. 1984. The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J. Neurosci. 4:2986–2992.PubMedGoogle Scholar
  48. 48.
    Ernfors, P., Hallbook, F., Ebendal, T., Shooter, E. M., Radeke, M. J., Misko, T. P., and Persson, H. 1988. Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron 1:983–996.PubMedCrossRefGoogle Scholar
  49. 49.
    Schecterson, L. C., and Bothwell, M. 1992. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 9:449–463.PubMedCrossRefGoogle Scholar
  50. 50.
    Robinson, M., Buj-Bello, A. and Davies, A. M. 1996 Paracrine interactions of BDNF involving NGF-dependent embryonic sensory neurons. Mol. Cell Neurosci. 7:143–151.PubMedCrossRefGoogle Scholar
  51. 51.
    Okado, N., and Oppenheim, R. W. 1984 Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. J. Neurosci. 4:1639–1652.PubMedGoogle Scholar
  52. 52.
    Miranda, R. C., Sohrabji, F., and Toran-Allerand, C. D. 1993. Neuronal co-localisation of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions Proc. Natl. Acad. Sci. USA 90: 6439–6443.PubMedCrossRefGoogle Scholar
  53. 53.
    Kokaia, Z., Bengzon, J., Metsis, M., Kokaia, M., Persson, H., and Lindvall, O. 1993. Coexpression of neurotrophins and their receptors in neurons of the central nervous system. Proc. Natl. Acad. Sci. USA 90:6711–6715.PubMedCrossRefGoogle Scholar
  54. 54.
    Ghosh, A., Carnahan, J., and Greenberg, M. E. 1994. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., and Lindsay, R. M. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–2.PubMedCrossRefGoogle Scholar
  56. 56.
    Wright, E. M., Vogel, K. S., and Davies, A. M. 1992. Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron 9:139–150.PubMedCrossRefGoogle Scholar
  57. 57.
    Acheson, A., Conover, J. C., Fandl, J. P., DeChlara, T. M., Russell, M., Thadani, A., Squinto, S. P., Yancopoulos, G. D. and Lindsay, R. M. 1995. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374:450–453.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Alun M. Davies
    • 1
  1. 1.School of Biological and Medical SciencesUniversity of St. AndrewsSt. AndrewsScotland

Personalised recommendations