On nonparametricT-method of multiple, comparisons for randomized blocks

  • Pranab Kumar Sen


Some nonparametric generalizations of Tukey’s [9]T-method of multiple comparisons are considered for randomized blocks and the allied efficiency results are studied. For this, the distribution theory of aligned rank order statistics developed in [6], [7] is extended for multiple comparisons along the lines of [5] which deals with one-way layouts.


Equality Sign Paired Difference Simultaneous Test Distribution Free Test Rank Order Test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Chernoff and I. R. Savage, “Asymptotic normality and efficiency of certain nonparametric tests,”Ann. Math. Statist., 29 (1958), 972–994.MathSciNetGoogle Scholar
  2. [2]
    M. Hollander, “An asymptotically distribution-free multiple comparison procedure-treatments versus control,”Ann. Math. Statist., 37 (1966), 735–738.MathSciNetMATHGoogle Scholar
  3. [3]
    P. Nemenyi, “Distribtion free multiple comparisons” (unpublished Ph.D. thesis), Princeton Univ., 1963.Google Scholar
  4. [4]
    M. L. Puri and P. K. Sen, “On some optimum nonparametric procedures in two-way layouts”,Amer. Statist. Ass., 62 (1967), 1214–1229.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    P. K. Sen, “On nonparametric, simultaneous confidence regions, and tests for the one criterion analysis of variance problem,”Ann. Inst. Statist., Math., 18 (1966), 319–336.MathSciNetMATHGoogle Scholar
  6. [6]
    P. K. Sen., “On some nonparametric, generalizations of Wilks’ tests forH M H VC andH MVC, I,”Ann. Inst. Statist. Math., 19 (1967), 451–471.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. K. Sen, “On, a class of aligned rank order tests in two-way layputs,”Ann. Math. Statist., 39 (1968), 1115–1124.MathSciNetMATHGoogle Scholar
  8. [8]
    R. G. D. Steel, “Treatments versus control multiple comparison sign test,”J. Amer. Statist. Ass., 54 (1959), 767–775.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    J. W. Tukey, “The problem of multiple comparisons,” Unpublished manuscript, Princeton Univ., 1953.Google Scholar
  10. [10]
    S. S. Wilks,Math. Statist, John Wiley & Sons Inc., New York, 1963.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1969

Authors and Affiliations

  • Pranab Kumar Sen
    • 1
  1. 1.University of North CarolinaChapel Hill

Personalised recommendations