Skip to main content
Log in

Acyl specificity in glyceride synthesis by lactating rat mammary gland

  • Published:
Lipids

An Erratum to this article was published on 01 August 1974

Abstract

We have investigated the possibility that the nonrandom association of fatty acids in rat milk triglycerides results from specificity of the acyl transferases in the glycerolphosphate pathway. Subcellular fractionation of lactating rat mammary gland revealed that the microsomal fraction was the most active in acylation of 3-sn-[U-14C] glycerolphosphate with various acyl-CoA's. The major products were diacylglycerolphosphate and diglyceride; no monoacylglycerolphosphate was detected. Maximum rate of acylation occurred at or below the critical micelle concentration for each acyl-CoA, indicating that only the monomeric substrate molecules were acceptable by the enzyme system. The observed acyl specificity, 16∶0>18∶0≏14∶0>12∶0>10∶0>8∶0 is consistent with the concept that, in general, milk triglycerides are synthesized by insertion of a short or medium chain fatty acid into a long chain diglyceride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanioka, H., C.Y. Lin, S. Smith, and S. Abraham, J. Dairy Sci. 56:650 (1973).

    Google Scholar 

  2. Breckenridge, W.C., and A. Kuksis, J. Lipid Res. 8:473 (1967).

    PubMed  CAS  Google Scholar 

  3. Breach, R.A., R. Dils, and R. Watts, J. Dairy Res. 40:273 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. Brockerhoff, H., Lipids 6:942 (1971).

    Article  PubMed  CAS  Google Scholar 

  5. Marai, L., W.C. Breckenridge, and A. Kuksis, Ibid. 4:562 (1969).

    Article  PubMed  CAS  Google Scholar 

  6. Bean, R.C., E.W. Putman, R.E. Trucco, and W.E. Hassid, J. Biol. Chem. 204:169 (1953).

    PubMed  CAS  Google Scholar 

  7. Ditmer, J.C., and M.A. Wells, in “Methods in Enzymology,” Vol. 14 Edited by J.M. Lowenstein, Academic Press, New York, N.Y., 1969, pp. 482–530.

    Google Scholar 

  8. Hohorst, H.J., in “Methods of Enzymatic Analysis,” Edited by H.U. Bergmeyer, Academic Press, New York, N.Y., 1963, pp. 215–129.

    Google Scholar 

  9. Simon, E.J., and D. Shemin, J. Amer. Chem. Soc. 75:2520 (1953).

    Article  CAS  Google Scholar 

  10. Smith, S., Arch. Biochem. Biophys. 156:751 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. Seubert, W., Biochem. Prep. 7:70 (1950).

    Google Scholar 

  12. Ellman, G., Arch. Biochem. Biophys. 82:70 (1959).

    Article  PubMed  CAS  Google Scholar 

  13. Abraham, S., K.J. Matthes, and I.L. Chaikoff, Biochim. Biophys. Acta 49:268 (1961).

    Article  PubMed  CAS  Google Scholar 

  14. Smith, S., D.J. Easter, and R. Dils, Ibid. 125:445 (1966).

    PubMed  CAS  Google Scholar 

  15. de Jiménez, E.S., and W.W. Cleland, Ibid. 176:685 (1969).

    Google Scholar 

  16. Gornall, A.G., C.J. Bardawill, and M.M. David, J. Biol. Chem. 177:751 (1949).

    PubMed  CAS  Google Scholar 

  17. Barden, R.E., and W.W. Cleland, Ibid. 244:3677 (1969).

    PubMed  CAS  Google Scholar 

  18. Zahler, W.L., R.E. Barden, and W.W. Cleland, Biochim. Biophys. Acta 164:1 (1968).

    PubMed  CAS  Google Scholar 

  19. Dils, R., and B. Clark, Biochem. J. 84:19P (1962).

  20. Hübscher, G., in “Lipid Metabolism,” Edited by S.J. Wakil, Academic Press, New York, N.Y. 1970, pp. 279–370.

    Google Scholar 

  21. Stein, O., and Y. Stein, J. Cell Biol. 34:251 (1967).

    Article  PubMed  CAS  Google Scholar 

  22. Zahler, W.L., and W.W. Cleland, Biochim. Biophys. Acta 176:699 (1969).

    PubMed  CAS  Google Scholar 

  23. Gatt, S., Barenholz, Y., Borkovski-Kubiler, I., and Z. Leibovitz-Ben Gershon, in “Sphingolipids, Sphingolipidoses and Allied Disorders, Edited by B.W. Volk and S.M. Aronson, Plenum Press, New York, N.Y. 1972, pp. 237–256.

    Google Scholar 

  24. Abou-Issa, H.M., and W.W. Cleland, Biochim. Biophys. Acta 176:692 (1969).

    PubMed  CAS  Google Scholar 

  25. Okuma, M., S. Yamashita, and S. Numa, Blood 41:379 (1973).

    PubMed  CAS  Google Scholar 

  26. Yamashita, S., K. Hosaka, and S. Numa, Proc. Natl. Acad. Sci. U.S. 69:3490 (1972).

    Article  CAS  Google Scholar 

  27. Kinsella, J.E., and M. Gross, Biochim. Biophys. Acta 316:109 (1973).

    PubMed  CAS  Google Scholar 

  28. Daae, L.N.W., FEBS Letters 27:46 (1972).

    Article  PubMed  CAS  Google Scholar 

  29. Smith, S., R. Watts, and R. Dils, J. Lipid Res. 9:52 (1968).

    PubMed  CAS  Google Scholar 

  30. Scow, R.W., C.L. Mendelson, O. Zinder, M. Hamosh, and E.J. Blanchette-Mackie, in “Dietary Lipids and Postnatal Development,” Edited by R. Paoletti and C. Galli, Raven Press, New York, N.Y., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02532516.

About this article

Cite this article

Tanioka, H., Lin, C.Y., Smith, S. et al. Acyl specificity in glyceride synthesis by lactating rat mammary gland. Lipids 9, 229–234 (1974). https://doi.org/10.1007/BF02532198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532198

Keywords

Navigation