, Volume 9, Issue 4, pp 221–228 | Cite as

Effect of soluble and membrane proteins upon diethyl ether extraction of aqueous phospholipid dispersions

  • G. Parenti-Castelli
  • E. Bertoli
  • A. M. Sechi
  • M. G. Silvestrini
  • G. Lenaz


The effect of proteins upon diethyl ether extraction of phospholipids from aqueous dispersions has been investigated as a model for elucidating lipid-protein interactions in the more complex membrane systems. Mixed phospholipids having a net anionic charge or purified lecithin (a zwitterion) are extracted from water dispersions into ether only after addition of salts. Basic proteins (lysozyme and cytochromec), by ionically binding phospholipids, allow extraction. Phospholipids are extracted together with the proteins in the form of neutralized lipid-protein complexes. On the other hand, lipid depleted mitochondria (a hydrophobic protein residue after acetone extraction of mitochondria), after reconstitution with phospholipids, do not allow phospholipid extraction unless salts or basic proteins also are added to the system. This observation indicates that, in reconstituted membranes, the phospholipids are largely in the bilayer form with the polar heads still charged and susceptible to ether extraction only after neutralization with salts or basic proteins.


Lysozyme Lecithin Basic Protein Ether Extraction Aqueous Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lenaz, G., J. Bioenergetics 4:456 (1972).Google Scholar
  2. 2.
    Lenaz, G., G. Parenti-Castelli, N. Monsigni, and M.G. Silvestrini, Ibid. 2:119 (1971).CrossRefGoogle Scholar
  3. 3.
    Lenaz, G., G. Parenti-Castelli, A.M. Sechi, and L. Masotti, Arch. Biochem. Biophys. 148:391 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    Green, D.E., Ann. N.Y. Acad. Sci. 195:150 (1972).PubMedGoogle Scholar
  5. 5.
    Smith, A.L., Methods Enzymol. 10:81 (1969).Google Scholar
  6. 6.
    Fleischer, S., and B. Fleischer, Ibid. 10:406 (1967).CrossRefGoogle Scholar
  7. 7.
    Rouser, G., C. Galli, E. Lieber, M.L. Blank, and O.S. Privett, JAOCS 41:836 (1964).Google Scholar
  8. 8.
    Cabo-Soler, J., A.M. Sechi, G. Parenti-Castelli, and G. Lenaz, J. Bioenergetics 2:129 (1971).CrossRefGoogle Scholar
  9. 9.
    Folch, J., M. Lees, and G.H. Sloane-Stanley, J. Biol. Chem. 226:497 (1957).PubMedGoogle Scholar
  10. 10.
    Marks, P.A., A. Gellhorn, and C. Kidson, Ibid. 235:2579 (1960).PubMedGoogle Scholar
  11. 11.
    Rouser, G., G. Kritchevsky, D. Heller, and E. Lieber, JAOCS 40:425 (1963).Google Scholar
  12. 12.
    Lenaz, G., A.M. Sechi, L. Masotti, and G. Parenti-Castelli, Arch. Biochem. Biophys. 141:79 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    Fleischer, S., B. Fleischer, and W. Stoeckenius, J. Cell Biol. 32:193 (1967).PubMedCrossRefGoogle Scholar
  14. 14.
    Lenaz, G., E. Bertoli, L. Landi, G. Parenti-Castelli, P. Pasquali, and A.M. Sechi, Proceedings Colloquium “Protides of Biological Fluids,” Edited by H. Peeters, Brugge, Belgium, 1973, In press.Google Scholar
  15. 15.
    Kimelberg, H.K., and D. Papahadjopoulos, J. Biol. Chem. 246:1142 (1971).PubMedGoogle Scholar
  16. 16.
    Marinetti, G.V., J. Lipid Res. 3:1 (1962).Google Scholar
  17. 17.
    Gornall, A.G., C.J. Bardawill, and M.M. David, J. Biol. Chem. 177:751 (1949).PubMedGoogle Scholar
  18. 18.
    Richardson, S.H., H.O. Hultin, and S. Fleischer, Arch. Biochem. Biophys. 105:254 (1964).PubMedCrossRefGoogle Scholar
  19. 19.
    Dawson, R.M.C., in “Biological Membranes-Physical Fact and Functions,” Edited by D. Chapman, Academic Press, London, England, 1968, p. 203.Google Scholar
  20. 20.
    Das, M.L., and F.L. Crane, Biochemistry 4:859 (1964).CrossRefGoogle Scholar
  21. 21.
    Gulik-Krzywicki, T., E. Schechter, V. Luzzati, and M. Faure, Nature 223:1116 (1968).CrossRefGoogle Scholar
  22. 22.
    Bruckdorfer, R.R., P.A. Edwards, and C. Green, Eur. J. Biochem. 4:306 (1968).Google Scholar
  23. 23.
    Chapman, D., and R.B. Leslie, in “Membranes of Mitochondria and Chloroplasts,” Edited by E. Racker, Van Nostrand Reinhold, New York, N.Y., 1970, p. 91.Google Scholar
  24. 24.
    Abramson, M.B., and D. Pisetsky, Biochim. Biophys. Acta 282:80 (1972).PubMedCrossRefGoogle Scholar
  25. 25.
    Green, D.E., and S. Fleischer, Ibid. 70:554 (1963).PubMedCrossRefGoogle Scholar
  26. 26.
    Kimelberg, H.R., C.P. Lee, A. Claude, and E. Mrena, J. Membrane Biol. 2:235 (1970).CrossRefGoogle Scholar
  27. 27.
    Lenaz, G., A.M. Sechi, G. Parenti-Castelli, and L. Masotti, Arch. Biochem. Biophys. 141:89 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    Hansen, M., and A.L. Smith, Biochim. Biophys. Acta 81:214 (1964).Google Scholar
  29. 29.
    Lee, A.G., N.J.M. Birdsall, Y.K. Levine, and J.C. Metcalfe, Ibid. 225:43 (1972).Google Scholar
  30. 30.
    Misiorowski, R.L., and M.A. Wells, Biochemistry 12:967 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    Phillips, M.C., E.G. Finer, and H. Hansen, Ibid. 290:397 (1972).Google Scholar
  32. 32.
    Gitler, C., and M. Montal, FEBS Lett. 28:329 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1974

Authors and Affiliations

  • G. Parenti-Castelli
    • 1
  • E. Bertoli
    • 1
  • A. M. Sechi
    • 1
  • M. G. Silvestrini
    • 1
  • G. Lenaz
    • 1
  1. 1.Instituto di Chimica BiologicaUniversità di BolognaBolognaItaly

Personalised recommendations