, Volume 2, Issue 5, pp 424–428 | Cite as

Biosynthesis of phospholipids in subcellular particles from cultured cells of human tissue

  • Shuang-Shine Tsao
  • W. E. Cornatzer


A time study of the incorporation of32Pi into the phospholipids of HeLa, KB, human heart, and liver tissue-culture cell lines has been carried out. The incorporation of32Pi at various time-intervals into the phospholipids of nuclei, mitochondria, and microsomes of HeLa and KB cells was investigated. The labeling of the isotope into the phospholipids was divided into three groups.

The first had two components: phosphatidyl inositol and polyglycerol phosphatides, which showed the greatest incorporation of the isotope as demonstrated in the specific activity values and the percentage of total radioactivity after 15 to 30 minutes of incubation. A second group was composed of the major phospholipids of all tissue-culture cell lines studied, phosphatidyl choline, and phosphatidyl ethanolamine. At first, there was a delayed labeling of these phospholipids; however, after one hour of incubation, a rapid increase was shown in the incorporation of32Pi. A third group of lipids containing sphingomyelin and phosphatidyl serine demonstrated low specific activity values.

The phospholipids of the subcellular fractions, nuclei, mitochondria, and microsomes, had a high degree of incorporation of the isotope into the individual phospholipids and probably represented an active process in the membranes of these cellular units or a renewal of the biological membrane structures.


Phosphatidyl Choline Phosphatidyl Ethanolamine Subcellular Fraction Phosphatidyl Inositol Individual Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artom, C., Biochem. Biophys. Res. Comm.15, 201–206 (1964).PubMedCrossRefGoogle Scholar
  2. 2.
    Bremer, J., and D. M. Greenberg, Biochim. Biophys. Acta37, 173–175 (1960).PubMedCrossRefGoogle Scholar
  3. 3.
    Bartlett, G. R., J. Biol. Chem.234, 469–471 (1959).PubMedGoogle Scholar
  4. 4.
    Borkenhagen, L. F., E. P. Kennedy and L. Fielding, J. Biol. Chem.236, PC 28–30 (1961).Google Scholar
  5. 5.
    Cornatzer, W. E., W. Sandstrom and J. H. Reiter, Biochim. Biophys. Acta57, 568–572 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    Garbus, J., H. F. DeLuca, M. E. Loomans and F. M. Strong, J. Biol. Chem.238, 59–63 (1963).PubMedGoogle Scholar
  7. 7.
    Gurr, M. I., C. Prottey and J. N. Hawthorne, Biochim. Biophys. Acta106, 357–370 (1965).PubMedGoogle Scholar
  8. 8.
    Hanahan, D. J., and G. A. Thompson Jr., in E. E. Snell, J. M. Luck, F. W. Allan and G. Mackinney, Ann. Rev. Biochem.32, 215–240 (1963).PubMedCrossRefGoogle Scholar
  9. 9.
    Hokin, L. E., and M. R. Hokin, Gastroenterology36, 368–376 (1959).PubMedGoogle Scholar
  10. 10.
    Ibid., J. Gen. Physiology44, 61–85 (1960).CrossRefGoogle Scholar
  11. 11.
    Karnovsky, M. L., and D. F. H. Wallach, J. Biol. Chem.236, 1895–1901 (1961).PubMedGoogle Scholar
  12. 12.
    Kennedy, E. P., Fed. Proc.16, 847–853 (1957).PubMedGoogle Scholar
  13. 13.
    Levin, C., and E. Chargaff, Exptl. Cell Res.3, 154–162 (1952).CrossRefGoogle Scholar
  14. 14.
    Logan, J. E., W. A. Mannell and R. J. Rossiter, Biochem. J.51, 480–487 (1952).PubMedGoogle Scholar
  15. 15.
    Marinetti, G. V., J. Erbland, M. Allrecht and E. Stotz, Biochim. Biophys. Acta30, 543–548 (1958).PubMedCrossRefGoogle Scholar
  16. 16.
    McCarl, R. L., and H. C. Triebold, Exptl. Cell Res.29, 475–482 (1963).PubMedCrossRefGoogle Scholar
  17. 17.
    Ogg, C. L., and C. O. Willets, J. Assoc. Offc. Agr. Chemists33, 100–103 (1950).Google Scholar
  18. 18.
    Sastry, P. S., and M. Kates, Canad. J. Biochem.43, 1445–1453 (1965).Google Scholar
  19. 19.
    Schneider, W. C., J. Biol. Chem.161, 293–303 (1945).Google Scholar
  20. 20.
    Shin, Y. S., Anal. Chem.34, 1164–1166 (1962).CrossRefGoogle Scholar
  21. 21.
    Spiro, M. J., and J. M. McKibbin, J. Biol. Chem.219, 643–651 (1956).PubMedGoogle Scholar
  22. 22.
    Strickland, E. H., and A. A. Benson, Arch. Biochem. Biophys.88, 344–351 (1960).PubMedCrossRefGoogle Scholar
  23. 23.
    Syverton, J. T., W. F. Scherer and Paul M. Elwood, J. Lab. and Clinical Med.43, 286–302 (1954).Google Scholar
  24. 24.
    Thompson, V. M., and H. E. DeLuca, J. Biol. Chem.239, 984–989 (1964).PubMedGoogle Scholar
  25. 25.
    Tsao, S. S., and W. E. Cornatzer, Lipids2, 41–46 (1967).CrossRefGoogle Scholar
  26. 26.
    Vignais, P. M., P. V. Vignais and A. L. Lehninger, J. Biol. Chem.239, 2011–2021 (1964).PubMedGoogle Scholar
  27. 27.
    Zilversmit, D. B., C. Enteman and M. C. Fishler, J. Gen. Physiol.26, 325–331 (1943).CrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1967

Authors and Affiliations

  • Shuang-Shine Tsao
    • 1
  • W. E. Cornatzer
    • 1
  1. 1.Guy and Bertha Ireland Research Laboratory, Department of BiochemistryUniversity of North Dakota, School of MedicineGrand Forks

Personalised recommendations