Skip to main content
Log in

Free fatty acid metabolism during stress: Exercise, acute cold exposure, and anaphylactic shock

  • Published:
Lipids

Abstract

Rates of turnover and oxidation of plasma free fatty acid (FFA) were determined in unanesthetized dogs during exercise, acute cold exposure and anaphylactic shock, with the aid of a technique involving the continuous infusion of albumin-bound palmitate-1-14C and the simultaneous measurement of O2 uptake, CO2 output and the specific activities of CO2 and FFA. During exercise in normal untrained dogs, plasma FFA supplied 20–30% of the energy, whereas in trained dogs 70–90% of the energy was derived from the FFA oxidation. In resting dogs at room temperature the plasma FFA level was 0.58 μEq/ml with a turnover rate of 18.6 μEq/kg/min of which 22% was immeditely oxidized and contributed 29% to the exhaled CO2. These results were compared with data obtained in pancreatectomized and thyroidectomized dogs. Acute cold exposure (temperature 4–5C) increased the FFA level and turnover rate to 1.02 μEq/ml and 28.0 μEq/kg/min, respectively, of which 33% was immedaitely oxidized, contributing 46% to the exhaled CO2. During anaphylactic shock, blood lactate increased, FFA level and turnover rate were reduced, and the fraction which was immediately oxidized was depressed markedly, i.e., 3–9% of FFA turnover. Sodium lactate infusion, which induces a blood lactate level comparable to that seen in anaphylaxis or nicotinic acid infusion, markedly decreased the level and turnover rate of FFA. However the fraction of turnover oxidized remained the same as during the preinfusion period (range of 21–40%. Exercise or the administration of norepinephrine during anaphylactic shock provided results suggesting that endogenous lactic acid interferes with FFA oxidation, whereas exogenous, lactate had no effect on this oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, D.T., R. Steele, N. Altszuler, A. Dunn, J.S. Bishop and R.C. De Bodo, Amer. J. Physiol. 201:9 (1961).

    PubMed  CAS  Google Scholar 

  2. Issekutz, B., Jr., H.I. Miller, P. Paul and K. Rodahl, Ibid. 207:583 (1964).

    PubMed  CAS  Google Scholar 

  3. Paul, P., J. Appl. Physiol. 28:127 (1970).

    PubMed  CAS  Google Scholar 

  4. Paul P., in “Advances in Experimental Medicine and Biology,” Vol. 11, Edited by B. Pernow and B. Saltin, Plenum Press, New York, 1971 p. 225.

    Google Scholar 

  5. Fredrickson, C.S., and R. Ono, J. Lab. Clin. Med. 51:147 (1958).

    PubMed  CAS  Google Scholar 

  6. Issekutz, B., Jr., H.I. Miller, P. Paul and K. Rodahl, Amer. J. Physiol. 209:1137 (1965).

    PubMed  CAS  Google Scholar 

  7. Issekutz, B., Jr., P. Paul and H.I. Miller, J. Appl. Physiol. 213:857 (1967).

    CAS  Google Scholar 

  8. Steele, R., N. Altszuler, J.S. Wall, A. Dunn and R.C. De Bodo, Amer. J. Physiol. 196:221 (1959).

    PubMed  CAS  Google Scholar 

  9. Paul, P., and B. Issekutz, Jr., J. Appl. Physiol. 22:615 (1967).

    PubMed  CAS  Google Scholar 

  10. Long, C.L., J.L. Spencer, J.M. Kinney and J.W. Geiger, Ibid. 31:110 (1971).

    PubMed  CAS  Google Scholar 

  11. Randle, P.J., and G.H. Smith, Biochem. J. 70:470 (1958).

    Google Scholar 

  12. Drucker, W.R., and J.C. De Kiewiet, Amer. J. Physiol. 206:317 (1964).

    PubMed  CAS  Google Scholar 

  13. Spitzer, J.J., and J.A. Spitzer, Amer. J. Appl. Physiol. 222:101 (1972).

    CAS  Google Scholar 

  14. Birke, G., L.A. Carlson and S.-O. Liljedahl, Quart. J. Exp. Physiol. 39:1 (1954).

    Google Scholar 

  15. Birke, G., L.A. Carlson and S.-O. Liljedahl, Acta Med. Scand. 178:337 (1965).

    Article  PubMed  CAS  Google Scholar 

  16. Carlson, L.A., and S.-O. Liljedahl, Ibid. 173:25 (1963).

    Article  PubMed  CAS  Google Scholar 

  17. Schumer, W., and R. Sperling, JAMA 205:75 (1960).

    Google Scholar 

  18. Stoner, H.B., D.F. Heath and O.M. Collings, Biochem. J. 76:135 (1960).

    PubMed  CAS  Google Scholar 

  19. Health, D.F., and C.J. Threlfall, Ibid. 110:337 (1968).

    Google Scholar 

  20. Stoner, H.B., D.F. Heath, C.J., Threlfall and M.M. Ashby, in “Intermedes Proceedings 1967; Combined Injuries and Shock,” Edited by B. Schilot and L. Thoren, Förszarets Forskningsanstalt, Stockholm, 1968, p. 115.

    Google Scholar 

  21. Kovach, A.G.B., S. Rosell, P. Sandor, E. Koltay, M. Hamori and E. Kovach, Naunyn-Schmiedebergs Arch. Pharmak. 268:140 (1971).

    Article  CAS  Google Scholar 

  22. Peterson, R.D., D. Gaudin, R.M. Bocer and C.H. Beatty, Amer. J. Physiol. 206:599 (1964).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Paul, P., Holmes, W.L. Free fatty acid metabolism during stress: Exercise, acute cold exposure, and anaphylactic shock. Lipids 8, 142–150 (1973). https://doi.org/10.1007/BF02531811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02531811

Keywords

Navigation