Skip to main content
Log in

Differential responsiveness of metabotropic glutamate receptors coupled to phosphoinositide hydrolysis to agonists in various brain areas of the adult rat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of metabotropic glutamate receptor (mGluR) agonists on inositol phosphates (IP) accumulation were investigated in slices of the cerebral cortex, hippocampus, striatum and cerebellum of adult Sprague-Dawley rats. EC50 values for 1S, 3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) did not differ significantly between various brain areas (range 10−5 M), quisqualate was the most potent in all the brain areas (range 10−7−10−6 M), except the cerebellum (10−5 M), ibotenate was the most potent in the striatum (range 10−6 M) and the least potent in the cerebral cortex and hippocampus (range 10−4 M). The efficacy in the four brain areas showed the following trend of ranking order for ACPD and quisqualate: hippocampus > striatum > cerebral cortex > cerebellum, and for ibotenate: hippocampus > cerebral cortex > striatum > cerebellum, although the observed differences reached the level of statistical significance only in the case of ACPD (hippocampus and striatum vs cerebellum) and ibotenate (hippocampus vs cerebellum). Co-incubation of the agonists at maximally effective concentrations in any pairwise combination resulted in no substantial additivity of IP accumulation. D,L-1-amino-3-phosphonopropionic acid (AP3) and D,L-2-amino-4-phosphonobutyric acid (AP4) at 0.5 mM concentration antagonized ACPD-induced IP accumulation by about 70 and 45%, respectively, without differences between brain areas. On the other hand, the antagonistic effects ofl-serine-o-phosphate (SOP) at 1 mM concentration were the highest in the hippocampus (75%) and the lowest in the cerebellum (25%). The comparative data indicate considerable regional receptor heterogeneity, in terms of different ratios of response to the agonists (but not antagonists, except SOP). There is a robust responsiveness of mGluRs not only in the hippocampus and cerebral cortex, but also in the striatum which exhibits the highest affinity to both quisqualate and ibotenate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., Franz-Bacon, K., Reggiani, A., Matarese, V., Condé, F., Collingridge, G. L., and Crépel, F. 1994. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:23–243.

    Article  Google Scholar 

  2. Schoepp, D. D., and Conn, P. J. 1993. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14:13–20.

    Article  PubMed  CAS  Google Scholar 

  3. Schoepp, D. D. 1994. Novel functions for subtypes of metabotropic glutamate receptors. Neurochem. Int. 24:439–449.

    Article  PubMed  CAS  Google Scholar 

  4. Winder, D. G., and Conn, P. J. 1995. Metabotropic glutamate receptor (mGluR)-mediated potentiation of cyclic AMP responses does not require phosphoinositide hydrolysis: mediation by a group II-like mGluR. J. Neurochem. 64:592–599.

    Article  PubMed  CAS  Google Scholar 

  5. Récasens, M., Mayat, E., and Guiramand, J. 1991. Excitatory amino acid receptors and phosphoinositide breakdown: Facts and perspectives. Curr. Aspects Neurosci. 3:103–175.

    Google Scholar 

  6. Vecil, G. G., Li, P. P., and Warsh, J. J. 1992. Evidence for metabotropic excitatory amino acid receptor heterogeneity: Developmental and brain regional studies. J. Neurochem. 59:252–258.

    Article  PubMed  CAS  Google Scholar 

  7. Schoepp, D. D., Bockaert, J., and Sladeczek, F. 1990. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol. Sci. 11:508–515.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, E., Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation. J. Neurochem. 42:1379–1387.

    Article  PubMed  CAS  Google Scholar 

  9. Pintor, A., Fortuna, S., and Michalek, H. 1994. Carbachol-induced accumulation of inositol phosphates and its modulation by excitatory amino acids in cortical slices of young and aged rats with down-regulation of muscarinic M1-receptors. Neurochem. Res. 19:1311–1317.

    Article  PubMed  CAS  Google Scholar 

  10. Fortuna, S., Pintor, A., Nalepa, I., and Michalek, H. 1994. Altered modulation by excitatory amino acids of cortical phosphatidylinositol system stimulated by carbachol in rats poisoned by an anticholinesterase compound, diisopropyl fluorophosphate. Neurotoxicol. 15:735–740.

    CAS  Google Scholar 

  11. Fowler, C. J., Court, J. A., Tiger, G., Björklund, P. E., and Candy, J. M. 1987. Stimulation of inositol phospholipid breakdown in rat cortical and hippocampal miniprisms by noradrenaline, 5-hydroxytryptamine and carbachol: some methodological aspects. Pharmacol. Toxicol. 60:274–279.

    Article  PubMed  CAS  Google Scholar 

  12. Nalepa, I., Pintor, A., Fortuna, S., Vetulani, J., and Michalek, H. 1989. Increased responsiveness of the cerebral cortical phosphatidylinositol system to noradrenaline and carbachol in senescent rats. Neurosci. Lett. 107:195–199.

    Article  PubMed  CAS  Google Scholar 

  13. Nalepa, I., Pintor, A., Chalecka-Franaszek, E., Fortuna, S., and Vetulani, J. 1993. Effects of excitatory amino acids on inositol phosphate accumulation in slices of the cerebral cortex of young and aged rats. Neurochem. Res. 18:585–589.

    Article  PubMed  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  15. De Lean, A., Munson, P. J., and Rodbard, D. 1978. Simultaneous analysis of families of sigmoidal curves: applications to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol. 245:E97-E102.

    Google Scholar 

  16. De Lean, A., Munson, P. J., and Rodbard, D. 1988. Users guide to Allfit. Simultaneous fitting of families of sigmoidal dose-response curves using the four parameter logistic equation. National Institute of Health, Bethesda.

    Google Scholar 

  17. Desai, M. A., and Conn, P. J. 1990. Selective activation of phophoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Let. 109:157–162.

    Article  CAS  Google Scholar 

  18. Blackstone, C. D., Supattapone, S., and Snyder, S. H. 1989. Inositolphospholipid-linked glutamate receptor mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. USA 86:4316–4320.

    Article  PubMed  CAS  Google Scholar 

  19. Godfrey, P. P., Jason Wilkins, C., Tyler, W., and Watson, S. P. 1988. Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rat cerebral cortex. Br. J. Pharmacol. 95:131–138.

    PubMed  CAS  Google Scholar 

  20. Godfrey, P. P., and Taghavi, Z. 1990. The effect of non-NMDA antagonists and phorbol esters on excitatory amino acid stimulated inositol phosphate formation in rat cerebral cortex. Neurochem. Int. 16:65–72.

    Article  CAS  PubMed  Google Scholar 

  21. Schoepp, D. D., and Johnson, B. G. 1988. Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  22. Doble, A., and Perrier, M. L. 1989. Pharmacology of excitatory amino acid receptors coupled to inositol phosphate metabolism in neonatal rat striatum. Neurochem. Int. 15:1–8.

    Article  CAS  PubMed  Google Scholar 

  23. Noble, E. P., Sincini, E., Bergmann, D., and ten Bruggencate, G. 1989. Excitatory amino acids inhibit stimulated phosphoinositide hydrolysis in the rat prefrontal cortex. Life Sci. 44:19–26.

    Article  PubMed  CAS  Google Scholar 

  24. Sladeczek, F., Récasens, M., and Bockaert, J. 1988. A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci. 11:545–549.

    Article  PubMed  CAS  Google Scholar 

  25. Schoepp, D. D., and Johnson, B. G. 1989. Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-(3H)-acetylaspartyl-glutamate binding in rat brain: Selective inhibition of phosphoinositide hydrolysis by 2-amino-3-phosphonopropionate. J. Neurochem. 53:273–278.

    Article  PubMed  CAS  Google Scholar 

  26. Thomsen, C., and Suzdak, P. D. 1993. Serine-O-phosphate has affinity for type IV, but not type I, metabotropic glutamate receptor. Neuroreport 4:1099–1101.

    Article  PubMed  CAS  Google Scholar 

  27. Nakanishi, S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzini, P., Bisso, G.M., Fortuna, S. et al. Differential responsiveness of metabotropic glutamate receptors coupled to phosphoinositide hydrolysis to agonists in various brain areas of the adult rat. Neurochem Res 21, 323–329 (1996). https://doi.org/10.1007/BF02531648

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02531648

Key Words

Navigation