Neurochemical Research

, Volume 21, Issue 3, pp 299–304 | Cite as

Sensitivity of ATPase-ADPase activities from synaptic plasma membranes of rat forebrain to lipid peroxidation in vitro and the protective effect of vitamin E

  • Marion Vietta
  • Silvana S. Frassetto
  • Ana M. O. Battastini
  • Adriane Bello-Klein
  • Cleci Moreira
  • Renato D. Dias
  • Jao J. F. Sarkis
Original Articles

Abstract

The in vitro effects of membrane lipid peroxidation on ATPase-ADPase activities in synaptic plasma membranes from rat forebrain were investigated. Treatment of synaptic plasma membranes with an oxidant generating system (H2O2/Fe2+/ascorbate) resulted in lipid peroxidation and inhibition of the enzyme activity. Besides, trolox as a water soluble vitamin E analogue totally prevented lipid peroxidation and the inhibition of enzyme activity. These results demonstrate the susceptibility of ATPase-ADPase activities of synaptic plasma membranes to free radicals and suggest that the protective effect against lipid peroxidation by trolox prevents the inhibition of enzyme activity. Thus, inhibition of ATPase-ADPase activities of synaptic plasma membranes in cerebral oxidative stress probably is related to lipid peroxidation in the brain.

Key Words

ATPase-ADPase ATP diphosphohydrolase free radicals oxidative stress synaptic plasma membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.PubMedCrossRefGoogle Scholar
  2. 2.
    Aust, S. D., Morehouse, L. A., and Thomas, C. E. 1985. Role of metals in oxygen radical reactions. Free Rad. Biol. Med. 1:3–25.CrossRefGoogle Scholar
  3. 3.
    Wolff, S. P., Garner, A., and Dean, R. T. 1986. Free radicals, lipids and protein degradation. TIBS. 11:27–31.Google Scholar
  4. 4.
    Stadtman, E. R. 1990. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Rad. Biol. Med. 9:315–325.PubMedCrossRefGoogle Scholar
  5. 5.
    Takenaka, Y., Miki, M., Yasuda, H., and Mino, M. 1991. The effect of α-tocopherol as an antioxidant on the oxidation of membrane protein thiols induced by free radicals generated in different sites. Arch. Biochem. Biophys. 285:344–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Schadeck, R. J. G., Sarkis, J. J. F. Dias, R. D., Araujo, H. M. M., and Souza, D. O. G. 1989. Synaptosomal apyrase, in the hypothalamus of adult rats. Braz. J. Med. Biol. Res. 22:303–314.PubMedGoogle Scholar
  7. 7.
    Rocha, J. B. T., Mello, C. F., Sarkis, J. J. F., and Dias, R. D. 1990. Undernutrition during the preweaning period changes calcium ATPase and ADPase activities of synaptosomal fraction of weanling rats. Br. J. Nutr. 63:273–283.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocha, J. B. T., Battastini, A. M. O., Sarkis, J. J. F., and Dias, R. D. 1990a. Effects of chronic treatment with high doses of chlorpromazine on ATP and ADP hydrolysis by synaptosomal fractions from the rat caudate nucleus. Braz. J. Med. Biol. Res. 23:969–973.PubMedGoogle Scholar
  9. 9.
    Battastini A. M. O., Rocha, J. B. T., Barcellos, C. K., Dias, R. D., and Sarkis, J. J. F. 1991. Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem. Res. 16:1303–1310.PubMedCrossRefGoogle Scholar
  10. 10.
    Sarkis, J. J. F., and Saltó, C. 1991. Characterization of a synaptosomal ATP diphosphohydrolase from the electric organ ofTorpedo marmorata. Brain Res. Bull. 26:871–876.PubMedCrossRefGoogle Scholar
  11. 11.
    Muller, J., Rocha, J. B. T. Battastini, A. M. O., Sarkis, J. J. F., and Dias, R. D. 1993. Postnatal development of ATPase-ADPase activities in synaptosomal fraction from cerebral cortex of rats. Neurochem. Int. 23:471–477.PubMedCrossRefGoogle Scholar
  12. 12.
    Schetinger, M. R. C., Barcellos, C. K., Barlem, A., Zwestch, G., Gubert, A., Bertuol, C., Arteni, N., Dias, R. D., Sarkis, J. J. F., and Netto, C. A. 1994. Activity of synaptosomal ATP diphosphohydrolase from hippocampus of rats tolerant to forebrain ischemia. Braz. J. Med. Biol. Res. 27:1123–1128.PubMedGoogle Scholar
  13. 13.
    Wyse A. T. S., Sarkis, J. J. F. Cunha-Filho, J. S., Teixeira, M. V., Schetinger, M. R., Wajner, M., and Wannmacher, C. M. D. 1994. Effect of phenylalanine and its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochem. Res. 19:1175–1180.PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards, F. A., Gibb, A. J., and Colquhoun, D. 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 359:144–147.PubMedCrossRefGoogle Scholar
  15. 15.
    Evans, R. J., Derkach, V., and Suprenant, A. 1992. ATP mediates fast synaptic transmission in mammalian neurons. Nature. 357: 503–505.PubMedCrossRefGoogle Scholar
  16. 16.
    Jones, D., and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation Biochem. Biophys. Acta. 356:276–287.PubMedGoogle Scholar
  17. 17.
    Rehncrona, S., Smith, D. S., Akesson, B., Westerberg, E., and Siesjo, B. K. 1980. Peroxidative changes in brain cortical fatty acids and phospholipids. as characterized during Fe2-and ascorbic acid-stimulated lipid peroxidation in vitro. J. Neurochem. 34: 1630–1638.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang, W., Wang, Y., and Askari, A. 1992. (Na++K+)-ATPase: inactivation and degradation induced by oxygen radicals. Int. J. Biochem. 24:621–626.PubMedCrossRefGoogle Scholar
  19. 19.
    Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100:95–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Llesuy, S., Milei, J., Gonzalez-Flecha, B. S., and Boveris, A. 1990. Myocardial damage induced by doxorubicins: hydroperoxide-initiated chemiluminescence and morphology. Free Rad. Biol. Med. 8:259–264.PubMedCrossRefGoogle Scholar
  21. 21.
    Buege, J. A. and Aust, S. D. 1978. Microsomal lipid peroxidation. Meth. Enzymol. 52:302–309.PubMedGoogle Scholar
  22. 22.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protiin-die binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Ross, D., and Moldeus, P. 1991. Antioxidant defense systems and oxidative stress. Pages 151–170,in Vigo-Pelfrey, C. (ed.), Membrane lipid oxidation, CRC Press, Boca Raton, Florida.Google Scholar
  24. 24.
    Miura, T., Muraoka, S., and Ogiso, T. 1993. Inhibition of hydroxyl radical-induced protein damages by trolox. Biochem. Mol. Biol. Int. 31:125–133.PubMedGoogle Scholar
  25. 25.
    Halliwell, B., and Chirico, S. 1993. Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57: 715S-725S.PubMedGoogle Scholar
  26. 26.
    Burnstock, G. 1993. Physiological and pathological roles of purines: an update. Drug Dev. Res. 28:195–206.CrossRefGoogle Scholar
  27. 27.
    Nagy, A., Shuster, T. A., and Rosenberg, M. D. 1983. Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. J. Neurochem. 40:226–234.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagy, A. K., Shuster, T. A., and Delgado-Escueta, A. V. 1986. Ecto-ATPase of mammalian synaptosomes: identification and enzymatic characterization. J. Neurochem. 47:976–986.PubMedCrossRefGoogle Scholar
  29. 29.
    Dunwiddie, T. V. 1985. The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27:63–139.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas, C. E., and Reed, D. J. 1990. Radical-induced inactivation of kidney Na+, K+-ATPase: sensitivity to membrane lipid peroxidation and the protective effect of vitamin E. Arch. Biochem. Biophys. 281:96–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Pellmar, T. C., Hollinden, G. E., and Sarvey, J. M. 1991. Free radicals accelerate the decay of long-term potentiation in field CAI of guinea-pig hippocampus. Neuroscience. 44:353–359.PubMedCrossRefGoogle Scholar
  32. 32.
    Halliwell, B., and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Meth. Enzymol. 186:1–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Borg, D. C., and Schaich, K. 1989. Pro-oxidant action of antioxidants. Pages 12–45,in Miquel, J., Quintanilha, A. T. and Weber, H. (eds.), CRC Handbook of free radicals and antioxidants in biomedicine, CRC Press, Boca Raton, Florida.Google Scholar
  34. 34.
    Mishra, O., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and Strophanthidin in vitro. Neurochem. Res. 14:845–851.PubMedCrossRefGoogle Scholar
  35. 35.
    Mishra, O., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. 1990. Lipid peroxidation as the mechanism of modification of brain 5′-nucleotidase activity in vitro. Neurochem. Res. 15: 237–242.PubMedCrossRefGoogle Scholar
  36. 36.
    Bromont, C., Marie, C., and Bralet, J. 1989. Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats. Stroke 20:918–924.PubMedGoogle Scholar
  37. 37.
    Sakamoto, A., Ohnishi, S., Ohnishi, T., and Ogawa, R. 1991. Protective effect of a new anti-oxidant on the rat brain exposed to ischemia-reperfusion injury: inhibition of free radical formation and lipid peroxidation. Free Radical Biol. Med. 11:385–391.CrossRefGoogle Scholar
  38. 38.
    Belló-Klein, A., Oliveira, A. R., Brunetto, A. F., Irigoyen, M. C., Llesuy, S., and Belló, A. A. 1994. Effect of vitamin A on cardiac contracture induced by hydrogen peroxide. Med. Sci. Res. 22: 411–413.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Marion Vietta
    • 1
  • Silvana S. Frassetto
    • 1
  • Ana M. O. Battastini
    • 1
  • Adriane Bello-Klein
    • 2
  • Cleci Moreira
    • 1
  • Renato D. Dias
    • 1
  • Jao J. F. Sarkis
    • 1
  1. 1.Departmento de Bioquimica, Instituto de BiociênciasUniversidadé Federal do Rio Grande do SulPorto AlegreBrasil
  2. 2.Departmento de Fisiologia, Laboratório de Fisiologia Cardiovascular, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrasil

Personalised recommendations