Lipids

, Volume 5, Issue 7, pp 611–616 | Cite as

Desaturation of saturated fatty acids by rat liver microsomes

  • John R. Paulsrud
  • Sheila E. Stewart
  • Gustav Graff
  • Ralph T. Holman
Article

Abstract

A method was developed for the rapid determination of the initial velocity of the desaturation of saturated fatty acids. In the reaction, DPNH was a more efficient electron donor than TPNH. Fatdeficient rats have a 2.5-fold greater level of acyl desaturase per milligram of liver microsomal protein than did animals fed lab chow. Increasing the chain length of the acyl substrate from 10∶0 to 18∶0 increases the rate of monoene formation, but 19∶0 is desaturated at a rate lower than that for 15∶0. The energy of activation (Ea) for the overall desaturation reaction has been determined for 12∶0 through 19∶0. The Ea values for desaturation of 13∶0 and 16∶0 are markedly lowr than for the other acids. An interaction between the alkyl chain of the substrate and polyunsaturated acids of the microsomal membrane-bound phospholipids is postulated to explain the recurring 3-carbon pattern of the relative reaction rates of the various acyl substrates.

Keywords

Desaturase Activity Endogenous Fatty Acid TPNH DPNH Acyl Activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oshino, N., Y. Imai and R. Sato, Biochim. Biophys. Acta 128:13–28 (1966).PubMedGoogle Scholar
  2. 2.
    Jones, P. D., P. Holloway, R. Peluffo and S. Wakil, J. Biol. Chem. 244:744–754 (1969).PubMedGoogle Scholar
  3. 3.
    Brenner, R., and R. Peluffo, Ibid. 241:5213–5219 (1966).Google Scholar
  4. 4.
    Uchiyama, M., M. Nakagawa and S. Okui, J. Biochem. 62:1–6 (1967).PubMedGoogle Scholar
  5. 5.
    Johnson, A. R., A. C. Fogerty, J. A. Pearson, F. Shenstone, A. Bersten, Lipids 4:265–269 (1969).PubMedGoogle Scholar
  6. 6.
    Baumann, W. J., and H. K. Mangold, J. Lipid Res. 9:287 (1968).PubMedGoogle Scholar
  7. 7.
    Schlenk, H., and D. Sand, Anal. Chem. 34:1676 (1962).CrossRefGoogle Scholar
  8. 8.
    Mohrhauer, H., and R. T. Holman, J. Lipid Res. 4:151 (1963).PubMedGoogle Scholar
  9. 9.
    Beisenherb, G., H. J. Boltze, T. Bucher, R. Czok, K. H. Garbade, E. Meyer-Arendt and G. Pfleiderer, Z. Naturforsch. 8B:555 (1953).Google Scholar
  10. 10.
    Mohrhauer, H., K. Christiansen, M. V. Gan, Manfred Deubig and R. T. Holman, J. Biol. Chem. 242:4507–4514 (1967).PubMedGoogle Scholar
  11. 11.
    Bligh, E. G., and W. J. Dyer, Can. J. Biochem. Physiol. 37:911–917 (1959).PubMedGoogle Scholar
  12. 12.
    Glass, R. L., and S. W. Christopherson, Chem. Phys. Lipids, in press.Google Scholar
  13. 13.
    Graff, G., Y. L. Marcel and R. T. Holman, J. Chromatog. Sci. 7:298–299 (1969).Google Scholar
  14. 14.
    Pande, S. V., and J. F. Mead, J. Biol. Chem. 243:352–361 (1968).PubMedGoogle Scholar
  15. 15.
    Nakagawa, M., and M. Uchiyama, J. Biochem. 63:684–687 (1968).PubMedGoogle Scholar
  16. 16.
    Chalvardjian, A., Biochem. J. 90:518–521 (1964).PubMedGoogle Scholar
  17. 17.
    Abou-Issa, H. M., and W. W. Cleland, Biochim. Biophys. Acta 176:692–698 (1969).PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1969

Authors and Affiliations

  • John R. Paulsrud
    • 1
  • Sheila E. Stewart
    • 1
  • Gustav Graff
    • 1
  • Ralph T. Holman
    • 1
  1. 1.The Hormel InstituteUniversity of MinnesotaAustin

Personalised recommendations