Advertisement

Lipids

, Volume 3, Issue 3, pp 221–224 | Cite as

Retinol inhibition of some proteolytic enzymes

  • A. L. Tappel
  • C. J. Dillard
Article

Abstract

Automated analyses were used to determine the effect of retinol on the activity of the following proteolytic enzymes: ficin (EC 3.4.4.12), bromelain (EC 3.4.4. 24), trypsin (EC 3.4.4.4.), chymotrypsin A (EC 3.4.4.5), papain (EC 3.4.4.10), clostridiopeptidase A (EC 3.4.4.19), pepsin (EC 3.4.4.1), cathepsin D (EC 3.4.4. 23) from rat-liver and rat-kidney lysosomes and the nonspecific proteolytic enzyme, pronase. Of these proteolytic enzymes only ficin, bromelain, and rat-kidney lysosomal cathepsin D were inhibited significantly by 1×10−4 M retinol.

Some nonproteolytic enzymes not inhibited by retinol were acid phosphatase (EC 3.1.3.2), β-acetylglucosaminidase (EC 3.2.1.30), arylsulfatase (EC 3.1.6.1), and pyruvate kinase (EC 2.7.1.40). The inhibition of cathepsin D varied with the substrate used, being greater with hemoglobin than with ovalbumin or bovine serum albumin. Carotene and retinol inhibited ficin and cathepsin D to similar extents. Retinol inhibition of ficin was partially reversible. These studies of proteolytic enzyme inhibition by retinol serve as a simple model for studying retinol-protein interactions in vitro.

Keywords

Retinol Proteolytic Enzyme Carotene Pyruvate Kinase Chymotrypsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tappel, A. L., and C. Dillard, Federation Proc.24, 355 (1965).Google Scholar
  2. 2.
    Tappel, A. L., and C. J. Dillard, J. Biol. Chem.242, 2463–2469 (1967).PubMedGoogle Scholar
  3. 3.
    Wald, G., “Vitamins and Hormones,” Vol. 18, Academic Press, New York, 1960, p. 417.Google Scholar
  4. 4.
    Ganguly, J., Ibid. “, p. 387.Google Scholar
  5. 5.
    Sawant, P. L., S. Shibko, U. S. Kumta and A. L. Tappel, Biochim. Biophys. Acta85, 82–92 (1964).PubMedGoogle Scholar
  6. 6.
    Shibko, S., and A. L. Tappel, Biochem. J.95, 731–741 (1965).PubMedGoogle Scholar
  7. 7.
    Tappel, A. L., Technicon International Symposium, New York, 1964, Paper 32.Google Scholar
  8. 8.
    Tappel, A. L., and C. Beck, in “Automation in Analytical Chemistry,” L. T. Skeggs, ed. Mediad Incorporated, New York, 1968, pp. 559–562.Google Scholar
  9. 9.
    Beck, C., and A. L. Tappel, Anal. Biochem.21, 208–218 (1967).PubMedCrossRefGoogle Scholar
  10. 10.
    Whitaker, J. R., J. Biol. Chem.239, 2170–2177 (1964).PubMedGoogle Scholar
  11. 11.
    Hsu, L., and A. L. Tappel, Biochim. Biophys. Acta101, 113–120 (1965).PubMedGoogle Scholar
  12. 12.
    Westphal, U., JAOCS41, 481–490 (1964).Google Scholar
  13. 13.
    Westphal, U., “Mechanism of the Action of Steroid Hormones,” Pergamon Press, New York, 1961, p. 33.Google Scholar
  14. 14.
    Mahadevan, S., M. S. thesis, Indian Institute of Science, Bangalore, 1960.Google Scholar
  15. 15.
    Whitaker, J. R., Food Res.24, 37–43 (1959).Google Scholar
  16. 16.
    Dingle, J. T., and J. A. Lucy, Biol. Rev.40, 422–461 (1965).PubMedGoogle Scholar
  17. 17.
    Fell, H. B., and J. T. Dingle, Biochem. J.87, 403–408 (1963).PubMedGoogle Scholar
  18. 18.
    Glauert, A. M., M. B. Daniel, J. A. Lucy and J. T. Dingle, J. Cell. Biol.17, 111–121 (1963).PubMedCrossRefGoogle Scholar
  19. 19.
    Dingle, J. T., A. M. Glauert, M. B. Daniel and J. A. Lucy, Biochem. J.84, 76p (1962).Google Scholar

Copyright information

© American Oil Chemists’ Society 1968

Authors and Affiliations

  • A. L. Tappel
    • 1
  • C. J. Dillard
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of CaliforniaDavis

Personalised recommendations