Skip to main content
Log in

Peroxidation of microsomal membrane protein—Lipid complexes

  • Published:
Lipids

Abstract

Nonenzymatic lipid peroxidation was studied using the TBA test on rat liver microsomal fractions, lipid micelles and structural protein-lipid micelle complexes. The kinetics, response to divalent cations, and iron-ascorbate catalysis were alike in the microsomal fraction and in the complex, but different in lipid micelles. The structural protein represented 41% of the total membrane protein, had a S20,obs of 3.5 and was hydrophobic. The binding of lipid micelles by structural protein proceeded in two steps, with an initial fast rate followed by a slower rate. The binding appeared to involve a hyrophobic association between lipid and protein as evidenced by insensitivity to pH, ionic strength and lack of preference for the individual classes of phospholipid micelles. Deoxycholate caused an increase in the initial peroxidation rate in microsomal fractions. Iron and ascorbate catalyzed lipid peroxidation in both the microsomal fraction and in the complex. Iron catalyzed lipid peroxidation but calcium, cobalt and copper inhibited the reaction in the SP-lipid micelle complex. Lipid peroxidation in microsomal suspensions, therefore, appears to be determined, in part, by the hydrophobic nature of the protein-lipid association found in membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochstein, P., and L. Ernster, in “Cellular Injury,” Edited by A. V. S. de Reuck and J. Knight, J. A. Churchill, Ltd., London, 1964 p. 123.

    Google Scholar 

  2. Barber, A. A., Lipids 1:146–151 (1966).

    Article  CAS  Google Scholar 

  3. Wills, E. D., Biochim. Biophys. Acta 98:238–251 (1965).

    PubMed  CAS  Google Scholar 

  4. Criddle, R. S., R. M. Bock, D. E. Green and H. D. Tisdale, Biochemistry 1:827–842 (1962).

    Article  PubMed  CAS  Google Scholar 

  5. Richardson, S. H., H. O. Hultin and D. E. Green, Proc. Natl. Acad. Sci. 50:821–827 (1963).

    Article  PubMed  CAS  Google Scholar 

  6. Richardson, S. H., H. O. Hultin and S. Fleischer, Arch. Biochem. Biophys. 105:254–260 (1964).

    Article  PubMed  CAS  Google Scholar 

  7. Criddle, R. S., and M. Fish, Biochem. Prep. 12:52–56 (1968).

    CAS  Google Scholar 

  8. Folch, J., M. Lees and G. H. S. Stanley, J. Biol. Chem. 226:497–509 (1957).

    PubMed  CAS  Google Scholar 

  9. Fleischer, S., and H. Klouwen, Biochem. Biophys. Res. Commun. 5:378–383 (1961).

    Article  CAS  Google Scholar 

  10. De Bohner, L. S., E. F. Soto and T. De Cohan, J. Chromatog. 17:513–519 (1965).

    Article  Google Scholar 

  11. Rouser, G., G. Kritchevsky, C. Galli and D. Heller, JAOCS 42:215–227 (1965).

    PubMed  CAS  Google Scholar 

  12. Getz, G. S., and W. Bartley, Biochem. J. 78:307–312 (1961).

    PubMed  CAS  Google Scholar 

  13. Metcalfe, L. D., and A. A. Schmitz, Anal. Chem. 33:363–364 (1961).

    Article  CAS  Google Scholar 

  14. Horning, E. C., E. H. Ahrens, Jr., S. R. Lipsky, F. H. Mattson, J. F. Mead, D. A. Turner and W. H. Goldwater, J. Lipid Res. 5:20–27 (1964).

    CAS  Google Scholar 

  15. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  16. Sandell, E. B., “Colorimetric Determination of Traces of Metals,” 2nd Edition, Interscience Publishers, New York, 1950, p. 375–378.

    Google Scholar 

  17. Youngburg, E. E., and M. V. Youngburg, J. Lab. Clin. Med. 16:158–166 (1930).

    CAS  Google Scholar 

  18. Bigelow, C. S., J. Theoret. Biol. 16:187–211 (1967).

    Article  CAS  Google Scholar 

  19. Getz, G. S., W. Bartley, F. Stirpe, B. M. Notton and A. Renshaw, Biochem. J. 83:181–191 (1962).

    PubMed  CAS  Google Scholar 

  20. Fleischer, S., and G. Rouser, JAOCS 42:588–607 (1965).

    PubMed  CAS  Google Scholar 

  21. Dahle, L. K., E. G. Hill and R. T. Holman, Arch. Biochem. Biophys. 98:253–261 (1962).

    Article  PubMed  CAS  Google Scholar 

  22. Green, D. E., and S. Fleischer, Biochim. Biophys. Acta 70:554–582 (1963).

    Article  PubMed  CAS  Google Scholar 

  23. Lenaz, G., N. F. Haard, A. Lauwers, D. W. Allmann and D. E. Green, Arch. Biochem. Biophys. 126:746–752 (1968).

    Article  PubMed  CAS  Google Scholar 

  24. Green, D. E., and S. Fleischer, in “Metabolism and Physiological Significance of Lipids,” Edited by R. M. C. Dawson and D. N. Rhodes, John Wiley & Sons, Inc., New York, 1964, p. 581.

    Google Scholar 

  25. De Pury, G. G., and F. D. Collins, Chem. Phys. Lipids 1:1–19 (1966).

    Article  Google Scholar 

  26. Emanuel, N. M., and Yu N. Lyaskovskays, “The Inhibition of Fat Oxidation Processes,” (Transl. from Russian), Pergamon Press, New York, 1967, p. 1–78.

    Google Scholar 

  27. Barber, A. A. Radiation Res. (Suppl.) 3:33–43 (1963).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Victoria, E.J., Barber, A.A. Peroxidation of microsomal membrane protein—Lipid complexes. Lipids 4, 582–588 (1969). https://doi.org/10.1007/BF02531045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02531045

Keywords

Navigation