Lipids

, Volume 4, Issue 5, pp 337–344 | Cite as

Flotation rates, molecular weights and hydrated densities of the low-density lipoproteins

  • F. T. Lindgren
  • L. C. Jensen
  • R. D. Wills
  • N. K. Freeman
Article

Abstract

A method involving three computer programs is described for characterizing the major component of the Sf 0–12 low-density lipoprotein class by its Sf rate, hydrated density and molecular weight. All necessary information is obtained from a standard low and high-density lipoprotein ultracentrifugal analysis. Moving-boundary flotation rates are measured in 1.061 g/ml sodium chloride and 1.200 g/ml sodium bromide solutions and are corrected to flotation at zero concentration. Hydrated densities are calculated from η Fo versus ρ plots and minimum hydrated molecular weights calculated using Stokes' frictional factor, assuming spherical molecules. Preliminary application of this procedure indicates higher S f o rates, higher molecular weights, and lower hydrated densities in females than in males. Molecular weights and standard deviations of the principal Sf 0–12 component for non-fasting normal adult females and males were 2.36±0.16 and 2.12±0.20 millions, respectively.

Keywords

Cholesteryl Ester Merthiolate Sodium Bromide Clinical Referral Schlieren Photograph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oncley, J. L., K. W. Walton and D. G. Cornwell, J. Am. Chem. Soc.30, 4666–4671 (1957).CrossRefGoogle Scholar
  2. 2.
    Lindgren, F. T., A. V. Nichols, T. L. Hayes, N. K. Freeman and J. W. Gofman, Ann. N.Y. Acad. Sci.72, 826–844 (1959).PubMedGoogle Scholar
  3. 3.
    Adams, G. H., Thesis, University of Pennsylvania, Philadelphia, 1966.Google Scholar
  4. 4.
    Oncley, J. L., G. Scatchard and A. Brown, J. Phys. Colloid Chem.51, 184–198 (1947).CrossRefPubMedGoogle Scholar
  5. 5.
    Lindgren, F. T., H. A. Elliott and J. W. Gofman, Ibid.55, 80–93 (1951).PubMedCrossRefGoogle Scholar
  6. 6.
    Oncley, J. L., Vox Sanguinis5, 91–92 (1960).Google Scholar
  7. 7.
    Bjorklund, R., and S. Katz, J. Am. Chem. Soc.,78, 2122–2126 (1956).CrossRefGoogle Scholar
  8. 8.
    Adams, G. H., and V. N. Schumaker, Ann. N.Y. Acad. Sci., in press.Google Scholar
  9. 9.
    Lindgren, F. T., N. K. Freeman, A. M. Ewing and L. C. Jensen, JAOCS43, 281–285 (1966).PubMedGoogle Scholar
  10. 10.
    Mills, G. L., C. E. Taylaur and P. A. Wilkinson, Clin. Chim. Acta14, 273–275 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    Fredrickson, D. S., R. I. Levy and F. T. Lindgren, J. Clin. Invest.47, 2446–2457 (1968).CrossRefGoogle Scholar
  12. 12.
    Ewing, A. M., N. K. Freeman and F. T. Lindgren, “Advances in Lipid Research,” Vol. 3, Academic Press Inc., New York, 1965, p. 25–61.Google Scholar
  13. 13.
    Freeman, N. K., J. Lipid Res.5, 236–241 (1964).PubMedGoogle Scholar
  14. 14.
    de Lalla, O., and J. Gofman, “Methods of Biochemical Analysis,” Vol. 1, Interscience, New York, 1954, p. 459–478.CrossRefGoogle Scholar
  15. 15.
    del Gatto, L., F. T. Lindgren and A. V. Nichols, Anal. Chem.31, 1397–1399 (1959).CrossRefGoogle Scholar
  16. 16.
    Lindgren, F. T., N. K. Freeman and A. M. Ewing, “Progress in Biochemical Pharmacology,” Vol. 2, Karger, Basel and New York, 1967, p. 475–499.Google Scholar
  17. 17.
    Schachman, H. K., “Ultracentrifugation in Biochemistry,” Academic Press Inc., New York, 1959, p. 66–67.Google Scholar
  18. 18.
    Moring-Claesson, I., Arkiv Kemi10, 1–102 (1956).Google Scholar
  19. 19.
    Meselson, M., F. W. Stahl and J. Vinograd, Proc. Nat. Acad. Sci.43, 581–588 (1957).PubMedCrossRefGoogle Scholar
  20. 20.
    Scanu, A., H. Pollard and W. Reader, J. Lipid Res.9, 342–349 (1968).PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1969

Authors and Affiliations

  • F. T. Lindgren
    • 1
  • L. C. Jensen
    • 1
  • R. D. Wills
    • 1
  • N. K. Freeman
    • 1
  1. 1.Donner Laboratory, Lawrence Radiation LaboratoryUniversity of CaliforniaBerkeley

Personalised recommendations