Skip to main content
Log in

Liver lipids during development

  • Published:
Lipids

Abstract

The fatty acid composition of the major liver microsomal phospholipids has been studied during pre- and postnatal development of the rabbit. The fatty acid composition of the total lipids, phosphatidyl choline, and phosphatidyl ethanolamine from animals −6, −3, 0, +3, +6, +9, +16, and +112 days of age was determined. Fatty acid composition is similar in phosphatidyl choline and phosphatidyl ethanolamine for oleic acid at +3, +6, +9, and +16 day old animals; palmitoleic acid at +9 day old animals and linoleic acid at −6, −3, and 0 day old animals.

Palmitoleic acid demonstrated a uniform decrease during early development in the total lipids and in both phosphatidyl choline and phosphatidyl ethanolamine; however, in the 112 day animal, the amount was just slightly lower than that observed for the earliest prenatal animal studied. Oleic acid decreased considerably during early postnatal development in the total lipids, phosphatidyl choline and phosphatidyl ethanolamine, but an increase in the 112 day animal was observed. Linoleic acid fluctuated considerably throughout postnatal development in the total lipids as well as in the two major phosphatides.

Lecithin biosynthesis has been studied by two pathways during development of rabbit liver from −6 days to +110 days. The two pathways of lecithin biosynthesis were evaluated by assaying the activities of the liver enzymes choline phosphotransferase and phosphatidylmethyltransferase at different time intervals during development. The greater enzymatic activity was observed in the cholinephosphotransferase during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lathe, G. H., and T. R. Ricketts, Quart. J. Exptl. Physiol.49, 74–80 (1964).

    CAS  Google Scholar 

  2. Flint, M., G. H. Lathe, T. R. Ricketts and G. Silman, Quart. J. Exptl. Physiol.49, 66–73 (1964).

    CAS  Google Scholar 

  3. Dallner, G., P. Siekevitz and G. E. Palade, Biochem. Biophys. Res. Commun.20, 135–141 (1965).

    Article  PubMed  CAS  Google Scholar 

  4. Miller, J. E., and W. E. Cornatzer, Biochim. Biophys. Acta125, 534–541 (1966).

    PubMed  CAS  Google Scholar 

  5. Dallner, G., P. Siekevitz and G. E. Palade, Biochem. Biophys. Res. Commun.20, 142–148 (1965).

    Article  PubMed  CAS  Google Scholar 

  6. Dobiasova, M., P. Hahn and O. Koldovsky Biochim. Biophys Acta84, 538–549 (1964).

    PubMed  CAS  Google Scholar 

  7. Folch, J., M. Lees and G. H. Sloane-Stanley, J. Biol. Chem.226, 497–509 (1957).

    PubMed  CAS  Google Scholar 

  8. Cornatzer, W. E., W. A. Sandstrom and J. H. Reiter, Biochim. Biophys. Acta57, 568–572 (1962).

    Article  PubMed  CAS  Google Scholar 

  9. Morgan, T. E., D. J. Hanahan and J. Eckholm, Federation Proc.22, 414 (1963).

    Google Scholar 

  10. Bowyer, D. E., W. M. F. Leats, A. N. Howard and G. A. Gresham, Biochem. J.89, 24P (1963).

  11. Burchfield, H. P., and E. E. Storrs, “Biochemical Applications of Gas Chromatography,” Academic Press, Inc., New York, 1962, p. 122–124.

    Google Scholar 

  12. Hanahan, D. J., H. Brockerhoff and E. J. Barron J. Biol. Chem.235, 1917–1923 (1960).

    PubMed  CAS  Google Scholar 

  13. Gurr, M. I., D. N. Brindley and G. Hubscher, Biochim. Biophys. Acta98, 486–501 (1965).

    PubMed  CAS  Google Scholar 

  14. Lowry, O. H., N. J. Rosebrough, H. L. Farr and R. J. Randall, J. Biol. Chem.193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  15. Artom, C., Biochem. Biophys. Res. Commun.15, 201–206 (1964).

    Article  PubMed  CAS  Google Scholar 

  16. Rehbinder, D., and C. M. Greenberg Arch. Biochem. Biophys.109, 110–115 (1965).

    Article  PubMed  CAS  Google Scholar 

  17. Parker, F., and N. Peterson, J. Lipid Res.6, 645–646 (1965).

    Google Scholar 

  18. Kennedy, E. P., in S. P. Colowick and N. O. Kaplan, “Methods in Enzymology,” Vol. 5, Academic Press, New York, 1962, p. 484–486.

    Book  Google Scholar 

  19. Schoenheimer, R., and D. Rittenberg, J. Biol. Chem.120, 155–165 (1937).

    CAS  Google Scholar 

  20. Bloomfield, D. K., and K. Bloch, J. Biol. Chem.235, 337–345 (1964).

    Google Scholar 

  21. Bernhard, K., J. Von Bülow-Köster and H. Wagner, Helv. Chim. Acta42, 152–155 (1959).

    Article  CAS  Google Scholar 

  22. Bjornstad, P., and J. Bremer, J. Lipid Res.7, 38–44 (1966).

    PubMed  CAS  Google Scholar 

  23. Kennedy, E. P., and S. B. Weiss, J. Biol. Chem.222, 193–213 (1956).

    PubMed  CAS  Google Scholar 

  24. Bremer, J., and D. M. Greenberg, Biochim. Biophys. Acta37, 173–175 (1960).

    Article  PubMed  CAS  Google Scholar 

  25. Weiss, S. B., E. P. Kennedy and J. Y. Kiyasu, J. Biol. Chem.235, 40–44 (1960).

    PubMed  CAS  Google Scholar 

  26. Balint, J. C., D. A. Beeler, D. H. Treble and H. L. Spitzer, J. Lipid Res.8, 486–493 (1967).

    PubMed  CAS  Google Scholar 

  27. Rytter, D., J. E. Miller and W. E. Cornatzer, Biochim. Biophys. Acta152, 418–421 (1968).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Baldwin, J., Cornatzer, W.E. Liver lipids during development. Lipids 3, 361–367 (1968). https://doi.org/10.1007/BF02530940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530940

Keywords

Navigation