Skip to main content
Log in

On a self-consistent representation of earth models, with an application to the computing of internal flattening

  • Published:
Bulletin Géodésique Aims and scope Submit manuscript

Abstract

Most realistic Earth models published as yet have been given in tabulated form, with the noticeable exception of three simple parametric Earth models derived by Dziewonski et al. (1975). Simple interpolation in these tables may lead to inconsistencies, when we consider certain effects which depend crucially on detailed density structure. We establish algorithmic formulae, which may be used to compute all the mechanical properties of a model in an entirely consistent way, once the density as well as P- and S- wave velocities are known. We then use this formulation to integrate Clairaut’s equation in a very efficient way, and thus obtain the hydrostatic flattening to the first order in smallness at any point inside the model. For most geodynamic purposes, we may suffice with this approximation. Finally, we show the results of some calculations of hydrostatic flattening to the first and second order, using an iterative technique of solving the integral figure equations, for an Earth model consistent with all geophysical data available at present. We find that the hydrostatic flattening at the surface should be about 1/298.8, instead of 1/296.961 as quoted by Nakiboglu (1979) for essentially the same model. Moreover, from our results, we estimate the actual flattening of the coremantle boundary to be about 1/390.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Z. ALTERMAN, H. JAROSCH & C.L. PEKERIS (1959): Oscillations of the Earth. Proc. Roy. Soc. London, A 252, 80–95.

    Article  Google Scholar 

  • B. BODRI & L. BODRI (1979): On the dynamic effects of the liquid core upon earth tides. Proc. 8 th Int. Symp. Earth Tides, Bonn 1977, pp. 680–688, edited by M. Bonatz & P. Melchior, Univ. Bonn.

  • E.C. BULLARD (1948): The figure of the Earth. Mon. Not. Roy. Astr. Soc., Geophys. Suppl. 5, 186–192.

    Article  Google Scholar 

  • K.E. BULLEN (1965): An introduction to the theory of seismology (Third edition). Cambridge University Press.

  • F.A. DAHLEN (1968): The normal modes of arotating, elliptical Earth. Geophys. J. Roy. Astr. Soc. 16, 329–367.

    Article  Google Scholar 

  • F.A. DAHLEN (1969): The normal modes of a rotating, elliptical Earth — II. Near-resonance multiplet coupling. Geophys. J. Roy. Astr. Soc. 18, 397–436.

    Article  Google Scholar 

  • C. DENIS (1974): Oscillations de configurations sphériques autogravitantes et applications & la Terre. Université de Liège, Thèse de doctoral.

  • C. DENIS (1979): Static and dynamic effects in theoretical Love numbers. Proc, 8 th Int. Syrup. Earth Tides, Bonn 1977, pp. 709–729, edited by M. Bonatz & P. Melchior, Univ. Bonn.

  • C. DENIS & A. IBRAHIM (1980): MODPOL - Programme numérique permettant de representer des modules terrestres, planétaires et stellaires de manière cohérente, Bull. Inf. Marées Terr. 83, 5236–5293.

    Google Scholar 

  • W.S. DORN & D.D. McCRACKEN (1972): Numerical methods with Fortran IV case studies. John Wiley & Sons, Inc.

  • A.M. DZIEWONSKI, A.L. HALES & E.R. LAPWOOD (1975): Parametrically simple Earth models consistent with geophysical data. Phys. Earth Planet. Inter. 10, 12–48.

    Article  Google Scholar 

  • D. EZER & A.G.W. CAMERON (1965): A study of solar evolution. Can. J. Phys. 43, 1497–1517.

    Article  Google Scholar 

  • S.W. HENRIKSEN (1960): The hydrostatic flattening of the Earth. Ann. I.G.Y., 12, 197–198.

    Google Scholar 

  • R. JAMES & Z. KOPAL (1963): The equilibrium figures of the Earth and the major planets, Icarus 1, 442–454.

    Article  Google Scholar 

  • H. JEFFREYS (1963): On the hydrostatic theory of the figure of the Earth. Geophys. J. Roy. Astr. Soc. 8, 196–202.

    Google Scholar 

  • H. JEFFREYS (1970): The Earth, its origin, history and physical constitution (Fifth edition), Cambridge University Press.

  • M.A. KHAN (1967): Some parameters of a hydrostatic Earth. Trans. Am. Geophys. Un, 48, 56 (also: J. Geophys. Res. 73 (1968), 5335–5342).

    Google Scholar 

  • P. MELCHIOR (1978): The tides of the planet Earth. Pergamon Press.

  • M.S. MOLODENSKY (1961): The theory of nutation and diurnal earth tides. Comm. Obs. Roy. Belgique 188, 25–56.

    Google Scholar 

  • H. MORITZ (1975): Report of Special Study Group No 5.39 of I.A.G.: Fundamental Constants. Bull. Géodésique 118, 398–408.

    Article  Google Scholar 

  • S.M. NAKIBOGLU (1976): Hydrostatic equilibrium figure of the Earth. Aust. J. geod. photogramm. Surv. 25, 1–16.

    Google Scholar 

  • S.M. NAKIBOGLU (1979): Hydrostatic figure and related properties of the Earth. Geophys. J. Roy. Astr. Soc. 57, 639–648.

    Article  Google Scholar 

  • J.A. O’KEEFE (1960): Determination of the Earth’s gravitational field. Space Research 1, 448–457.

    Google Scholar 

  • C.L. PEKERIS & Y. ACCAD (1972): Dynamics of the liquid core of the Earth. Phil. Trans. Roy. Soc. London A 273, 237–260.

    Google Scholar 

  • R. RADAU (1885): Remarques sur la théorie de la figure de la Terre. Bull. Astron. 2, 157–161 (also: C.R. Acad. Sci. Paris 100, 972-974).

    Google Scholar 

  • P.Y. SHEN & L. MANSINHA (1976): Oscillation, nutation and wobble of an elliptical rotating Earth with liquid outer core. Geophys. J. Roy. Astr. Soc. 46, 467–496.

    Article  Google Scholar 

  • F.D. STACEY (1977):: Physics of the Earth (Second edition). Appendix F, p. 332; Appendix G, pp. 337–341, John Wiley & Sons, Inc.

  • V.N. ZHARKOV & TRUBITSYN (1978): Physics of planetary interiors, edited by W.B. Hubbard, Pachart Publishing House, Tucson.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis, C., Ibrahim, A. On a self-consistent representation of earth models, with an application to the computing of internal flattening. Bull. Geodesique 55, 179–195 (1981). https://doi.org/10.1007/BF02530859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530859

Keywords

Navigation