Bulletin géodésique

, Volume 54, Issue 4, pp 531–543 | Cite as

Second order design of a free distance network, considering different types of criterion matrices

  • G. Schmitt


A numerically efficient solution strategy is developed for the second-order design of a free distance network. It is based on the fact that the direct (non-canonical) way has a regular least-squares solution. A flow chart illustrates the direct construction of the final equations, using a list of point coordinates and a list of projected distances as input. Results are shown for an actual network (11 points, 47 distances), considering different types of criterion matrices: Taylor-Karman structure with homogeneous-isotropic point error ellipses and special Taylor-Karman structure with isotropic relative error ellipses. Finally, the construction of a criterion-matrixQ x is briefly discussed in the case that a certain number of quantities shall be derived from the network.


Geodetic Network Observation Plan Mixed Block Criterion Matrix Order Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. BOSSLER, E. GRAFAREND and R. KELM, 1973: Optimal Design of Geodetic Nets II.Journal of Geophysical Research 78, p. 5887–5897.CrossRefGoogle Scholar
  2. P.A. CROSS and T. THAPA, 1979: The optimal design of levelling networks.Survey Review XXV, No. 192, p. 68–79.Google Scholar
  3. E. GRAFAREND, 1975: Second Order Design of Geodetic Nets.Zeitschrift für Vermessungswesen 100, p. 158–168.Google Scholar
  4. E. GRAFAREND and B. SCHAFFRIN, 1979: Kriterion-Matrizen I—zweidimensionale homogene und isotrope geodätische Netze,Zeitschrift für Vermessungswesen 104, p. 133–149.Google Scholar
  5. C.R. RAO and S.K. MITRA, 1971: Generalized Inverses of Matrices and its Applications. New York.Google Scholar
  6. B. SCHAFFRIN, 1980: Some proposals Concerning the Diagonal Second Order Design of Geodetic Network.Survey Review, to appear.Google Scholar
  7. B. SCHAFFRIN, E. GRAFAREND and G. SCHMITT, 1977: Kanonisches Design geodätischer Netze I.Manuscripta Geodetica 2, p. 263–306.Google Scholar
  8. G. SCHMITT, 1977: Experiences with the Second Order Design Problem in Theoretical and Practical Geodetic Networks. Presented to the International Symposium on Optimization of Design and Computation of Control Networks. I.A.G.-Symposium, Sopron, Hungary, July 3–9.Google Scholar
  9. G. SCHMITT, E. GRAFAREND and B. SCHAFFRIN, 1978: Kanonisches Design Geodätischer Netze II.Manuscripta Geodetica 3, p. 1–22.Google Scholar
  10. G. SCHMITT, 1980: Zur Numerik der Gewichtsoptimierung in geodätischen Netzen.Deutsche Geodätische Kommission, C-256.Google Scholar
  11. W.H. SPRINSKY, 1974: The Design of Special Purpose Horizontal Geodetic Control Networks. Dissertation. Ohio State University.Google Scholar
  12. H. WIMMER, 1978: Eine Bemerkung zur günstigsten Gewichtsverteilung bei vorgegebener Dispersionsmatrix der Unbekannten.Allgemeine Vermessungs-Nachrichten 85, p. 375–377.Google Scholar

Copyright information

© Bureau Central de L'Association Internationale de Géodésie 1980

Authors and Affiliations

  • G. Schmitt
    • 1
  1. 1.Geodätisches Institut der Universität Karlsruhe (TH)KarlsruheBundesrepublik Deutschland

Personalised recommendations